Skip to main content

Advertisement

Log in

Apoptotic agents inducing genotoxicity-specific chromatin changes

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

To visualize characteristic chromatin distortions we have distinguished first among regularly occurring intermediates of chromatin structures in mammalian (Indian muntjac, CHO, murine preB, rat liver, rat myeloid leukemia, K562 human erythroid leukemia) and Drosophila nuclei. Fluorescence microscopy of chromatin structures isolated from nuclei of reversibly permeable cells revealed a common pathway of chromatin condensation in mammalian cells. Different intermediates in mammalian and Drosophila cells indicate alternative mechanisms of chromosome condensation. Genotoxic agents such as irradiation (alpha, gamma, UV-B) and heavy metals (Cd, Pb, Ni, Hg, Ag) caused alterations in chromatin structures leading to apoptosis. Injury-specific chromatin changes manifested at significantly lower concentrations than non-specific signs of cellular toxicity, suggesting that preapoptotic events are useful indicators of genotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Banfalvi G (2009) Apoptotic chromatin changes. Springer, Dordrecht, Fig. 1.10 p. 17, Fig. 4

  2. Bernard J, Malawista SE (1995) Remembrance of professor Marcel Bessis (1917–1994). Blood Cell Mol Dis 21:152–155

    Article  CAS  Google Scholar 

  3. Kerr JFR (1971) Shrinkage necrosis: a distinct mode of cellular death. J Pathol 105:13–20

    Article  CAS  PubMed  Google Scholar 

  4. Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, Costantini P, Ferri KF, Irinopoulou T, Prévost MC, Brothers G, Mak TW, Penninger J, Earnshaw WC, Kroemer G (2000) Two distinct pathways leading to nuclear apoptosis. J Exp Med 192:571–580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Banfalvi G, Klaisz M, Ujvarosi K, Trencsenyi G, Rozsa D, Nagy G (2007) Gamma irradiation induced apoptotic changes in the chromatin structure of human erythroleukemia K562 cells. Apoptosis 12:2271–2283

    Article  CAS  PubMed  Google Scholar 

  6. Humke EW (2000) Web Alert Apoptosis. Chem Biol 7(2):R48–R49

    Article  CAS  PubMed  Google Scholar 

  7. Nagy G, Pinter G, Kohut G, Adam A, Trencsenyi G, Hornok L, Banfalvi G (2010) Time-lapse analysis of cell death in mammalian and fungal cells. DNA Cell Biol 29:249–259

    Article  CAS  PubMed  Google Scholar 

  8. Paulson JR, Laemmli UK (1977) The structure of histone depleted chromosomes. Cell 12:817–828

    Article  CAS  PubMed  Google Scholar 

  9. Adolph KW (1980) Isolation and structural organization of human mitotic chromosomes. Chromosoma 76:23–33

    Article  CAS  PubMed  Google Scholar 

  10. Rattner JB, Lin CC (1985) Radial loops and helical coils coexist in metaphase chromosomes. Cell 42:291–296

    Article  CAS  PubMed  Google Scholar 

  11. Boy De La Tour E, Laemmli UK (1988) The metaphase scaffold is helically folded: sister chromatids have predominantly opposite helical handedness. Cell 55:937–944

    Article  CAS  PubMed  Google Scholar 

  12. Kireeva N, Lakonishok M, Kireev I, Hirano T, Belmont AS (2004) Visualization of early chromosomal condensation: a hierarchical folding, axial glue model of chromosome structure. J Cell Biol 166:775–785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Banfalvi G (1993) Fluorescent analysis of replication and intermediates of chromatin folding in nuclei of mammalian cells. In: Bach PH, Reynolds CH, Clark JM, Mottley J, Poole PL (eds) Biotechnology applications of microinjection, microscopic imaging, and fluorescence. Plenum Press, New York, pp 111–119

    Chapter  Google Scholar 

  14. Hepperger C, Otten S, von Hase J, Dietzel S (2007) Preservation of large-scale chromatin structure in FISH experiments. Chromosoma 116:117–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kobliakova I, Zatsepina O, Stefanova V, Polyakov V, Kireev I (2005) The topology of early- and late-replicating chromatin in differentially decondensed chromosomes. Chromosome Res 13:169–181

    Article  CAS  PubMed  Google Scholar 

  16. Banfalvi G, Sooki-Toth A, Sarkar N, Csuzi S, Antoni F (1984) Nascent DNA chains synthesized in recersibly permeable cells of mouse thymocytes. Eur J Biochem 139:553–559

    Article  CAS  PubMed  Google Scholar 

  17. Flemming W (1882) Zellsubstanz, Kern- und Zelltheilung. Vogel, Leipzig

    Google Scholar 

  18. Balbiani EG (1881) Sur la structure du noyau des cellules salivaires chez les larves de Chironomus. Zool Anz 4(637–641):662–666

    Google Scholar 

  19. Banfalvi G (2008) Chromatin fiber structure and plectonemic model of chromosome condensation in Drosophila cells. DNA Cell Biol 27:65–70

    Article  CAS  PubMed  Google Scholar 

  20. Trencsenyi G, Nagy G, Bako F, Kertai P, Banfalvi G (2012) Incomplete chromatin condensation in enlarged rat myelocytic leukemia cells. DNA Cell Biol 31:470–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Paniagua P, Nistal M, Amat P, Rodriguez MC, Alonso JR (1986) Quantitative differences between variants of a spermatogonia in man. J Reprod Fertil 77:669–673

    Article  CAS  PubMed  Google Scholar 

  22. Nagy G, Kiraly G, Turani M, Banfalvi G (2013) Cell trivision of hyperploid cells. DNA Cell Biol 32:676–684

    Article  CAS  PubMed  Google Scholar 

  23. Müller I, Boyle S, Singer RH, Bickmore WA, Chubb JR (2010) Stable morphology, but dynamic internal reorganisation, of interphase human chromosomes in living cells. PLoS One 13(5):e11560. doi:10.1371/journal.pone.0011560

    Article  Google Scholar 

  24. Bjorkroth B, Ericsson C, Lamb MM, Danehol B (1988) Structure of the chromatin axis during transcription. Chromosoma 96:333–340

    Article  Google Scholar 

  25. Belmont AS, Braunfeld MB, Sedat JW, Agard DA (1989) Large-scale chromatin structural domains within mitotic and interphase chromosomes in vivo and in vitro. Chromosoma 98:129–143

    Article  CAS  PubMed  Google Scholar 

  26. Lemke J, Claussen J, Michel S, Chudoba I, Mühlig P, Westermann M, Sperling K, Rubtsov N, Grummt UW, Ullmann P, Kromeyer-Hauschild K, Liehr T, Claussen U (2002) The DNA-based structure of human chromosome 5 in interphase. Am J Hum Genet 71:1051–1059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2:444–456

    Article  CAS  PubMed  Google Scholar 

  28. Pulkinnen JO, Joensuu LH, Martikainen P, Servomaa K, Grénman R (1996) Paclitaxel-induced apoptotic changes followed by time-lapse video microscopy in cell lines established from head and neck cancer. J Cancer Res Clin Oncol 122:214–218

    Google Scholar 

  29. Forrester HB, Albright N, Ling CC, Dewey WC (2000) Computerized video time-lapse analysis of apoptosis of REC:Myc cells X-irradiated in different phases of the cell cycle. Radiat Res 154:625–639

    Article  CAS  PubMed  Google Scholar 

  30. Hoepfner D, Brachat A, Philippsen P (2000) Time-lapse video microscopy analysis reveals astral microtubule detachment in the yeast spindle pole mutant cnm67. Mol Biol Cell 11:1197–1211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lane JD, Allan VJ, Woodman PG (2005) Active relocation of chromatin and endoplasmic reticulum into blebs in late apoptotic cells. J Cell Sci 118:4059–4071

    Article  CAS  PubMed  Google Scholar 

  32. Rieger MA, Schroeder T (2008) Exploring hematopoiesis at single cell resolution. Cell Tissues Organs 188:139–149

    Article  Google Scholar 

  33. Hinchcliffe EH (2005) Using long-term time-lapse imaging of mammalian cell cycle progression for laboratory instruction and analysis. Cell Biol Educ 4:284–290

    Article  PubMed Central  PubMed  Google Scholar 

  34. Dixit R, Cyr R (2003) Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive microscopy. Plant J 36:280–290

    Article  CAS  PubMed  Google Scholar 

  35. Gacsi M, Nagy G, Pinter G, Basnakian AG, Banfalvi G (2005) Condensation of interphase chromatin in nuclei of Chinese hamster ovary (CHO-K1) cells. DNA Cell Biol 24:43–53

    Article  CAS  PubMed  Google Scholar 

  36. Banfalvi G (2008) Cell cycle synchronization of animal cells and nuclei by centrifugal elutriation. Nat Protoc 3:663–673

    Article  CAS  PubMed  Google Scholar 

  37. Banfalvi G (2011) Synchronization of mammalian cells and nuclei by centrifugal elutriation. Methods Mol Biol 761:25–45

    Article  PubMed  Google Scholar 

  38. Banfalvi G, Nagy G, Gacsi M, Roszer T, Basnakian AG (2006) Common pathway of chromosome condensation in mammalian cells. DNA Cell Biol 25:295–301

    Article  CAS  PubMed  Google Scholar 

  39. Henriques V, Orskov SL (1936) Untersuchungen fiber die Schwankungen des Kationgehaltes der roten Blutkörperchen. Skand Arch Physiol 74:63–78

    Article  CAS  Google Scholar 

  40. Davson H, Danielli JF (1938) Studies on the permeability of erythrocytes factors in cation permeability. Biochem J 32:991–1001

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Joyce CRB, Moore H, Weatherall M (1954) The effects of lead, mercury, and gold on the potassium turnover of rabbit blood cells. Br J Pharmacol Chemother 9:463–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Passow H, Rothstein A (1960) The binding of mercury by the yeast cell in relation to changes in permeability. J Gen Physiol 43:621–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Braeckman B, Raes H, Van Hoye D (1997) Heavy-metal toxicity in an insect cell line. Effects of cadmium chloride, mercuric chloride and methylmercuric chloride on cell viability and proliferation in Aedes albopictus cells. Cell Biol Toxicol 13:389–397

    Article  CAS  PubMed  Google Scholar 

  44. McBrien DCH, Hassal KA (1965) The effect of toxic doses of copper upon respiration, photosynthesis and growth of Chlorella vulgaris. Physiol Plant 20:113–117

    Article  Google Scholar 

  45. Halldorson H, Gray DA, Shall S (1978) Poly (ADP-ribose) polymerase activity in nucleotide permeable cells. FEBS Lett 85:349–359

    Article  Google Scholar 

  46. Kucera R, Paulus H (1982) Studies on ribonucleoside-diphosphate reductase in permeable animal cells. II. Catalytic and regulatory properties of the enzyme in mouse L cells. Arch Biochem Biophys 214:114–123

    Article  CAS  PubMed  Google Scholar 

  47. Lesh RE, Somlyo AP, Owens GK, Somlyo AV (1995) Reversible permeabilization: a novel technique for the intracellular introduction of antisense oligodeoxynucleotides into intact smooth muscle. Circ Res 77:220–230

    Article  CAS  PubMed  Google Scholar 

  48. Kobayashi S, Kitazawa T, Somlyo AV, Somlyo AP (1989) Cytosolic heparin inhibits muscarinic and alpha-adrenergic Ca2+ release in smooth muscle. Physiological role of inositol 1,4,5-trisphosphate in pharmacomechanical coupling. J Biol Chem 264:17997–18004

    CAS  PubMed  Google Scholar 

  49. Demis DJ, Rothstein A (1955) Relationship of the cell surface to metabolism. XII. Effect of mercury and copper on glucose uptake and respiration of rat diaphragm. Am J Physiol 180:566–574

    CAS  PubMed  Google Scholar 

  50. Jacobs MH, Glassman HN, Parpart AK (1950) Hemolysis and zoological relationship. Comparative studies with four penetrating non-electrolytes. J Exp Zool 113(2):277–300

    Article  Google Scholar 

  51. Wilbrandt W (1941) Die Wirkung von Schwermetallsalzen auf die Erythrocyten- permeabilität für Glycerin. Pflüg Arch Ges Physiol 244(5):637–643

    Article  CAS  Google Scholar 

  52. Myrbäck K (1957) Inhibition of yeast invertase (saccharase) by metal ions. V. Inhibition by mercury compounds. Arkiv Kemi 11:471–479

    Google Scholar 

  53. Banfalvi G, Littlefield N, Hass B, Mikhailova M, Csuka I, Szepessy E, Chou WM (2000) Effect of cadmium on the relationship between replicative and repair DNA synthesis in synchronized cho cells. Eur J Biochem 267:6580–6585

    Article  CAS  PubMed  Google Scholar 

  54. Banfalvi G, Gacsi M, Nagy G, Kiss BZ, Basnakian AG (2005) Cadmium induced apoptotic changes in chromatin structure and subphases of nuclear growth during the cell cycle in CHO cells. Apoptosis 10:631–642

    Article  CAS  PubMed  Google Scholar 

  55. Banfalvi G, Ujvarosi K, Trencsenyi G, Somogyi C, Nagy G, Basnakian AG (2007) Cell culture density dependent toxicity and chromatin changes upon cadmium treatment in murine pre-B cells. Apoptosis 12:1219–1228

    Article  CAS  PubMed  Google Scholar 

  56. Banfalvi G, Sarvari A, Nagy G (2012) Chromatin changes induced by Pb and Cd in human cells. Toxicol In Vitro 26:1064–1071

    Article  CAS  PubMed  Google Scholar 

  57. Trencsenyi G, Kertai P, Somogyi C, Nagy G, Dombradi Z, Gacsi M, Banfalvi G (2007) Chemically induced carcinogenesis affecting chromatin structure in rat hepatocarcinoma cells. DNA Cell Biol 26:649–655

    Article  CAS  PubMed  Google Scholar 

  58. Yedjou CG, Milner JN, Howard CB, Tchounwou TB (2010) Basic apoptotic mechanisms of lead toxicity in human leukemia (HI-60) cells. Int J Environ Res Publ Health 7:2008–2017

    Article  CAS  Google Scholar 

  59. Columbano A, Ledda-Columbano GM, Coni PP, Faa G, Liguori C, Santa Cruz G, Pani P (1985) Occurrence of cell death (apoptosis) during the involution of liver hyperplasia. Lab Investig 52:670–675

    CAS  PubMed  Google Scholar 

  60. Xu J, Ji L-D, Xu L-H (2006) Lead-induced apoptosis on PC 12 cells: involvement of p53, Bcl-2 family and caspase-3. Toxicl Lett 166:160–167

    Article  CAS  Google Scholar 

  61. Agarwal S, Roy S, Ray A, Mazumbder S, Bhattacharya S (2009) Arsenic trioxide and lead acetate induce apoptosis in adult rat stem cells. Cell Biol Toxicol 25:403–413

    Article  CAS  PubMed  Google Scholar 

  62. Nagy G, Laza D, Ujvarosi K, Banfalvi G (2011) Chromatin toxicity of Ni(II) ions in K562 erythroleukemia cells. In: Banfalvi G (ed) Cellular effects of heavy metals. Springer, New York, pp 163–178

    Chapter  Google Scholar 

  63. Farkas E, Ujvarosi K, Nagy G, Posta J, Banfalvi G (2010) Apoptogenic and necrogenic effects of mercuric acetate on the chromatin structure of K562 human erythroleukemia cells. Toxicol In Vitro 24:267–275

    Article  CAS  PubMed  Google Scholar 

  64. Kasprzak KS, Sunderman FW Jr, Salnikow K (2003) Nickel carcinogenesis. Mutat Res 533:67–97

    Article  CAS  PubMed  Google Scholar 

  65. Nagy G, Turani M, Kovacs KE, Banfalvi G (2011) Chromatin changes upon silver nitrate treatment in human keratocyte HaCaT and K562 erythroleukemia cells. In: Banfalvi G (ed) Cellular effects of heavy metals. Springer, New York, pp 195–217

    Chapter  Google Scholar 

  66. Nagy G, Gacsi M, Rehak M, Basnakian AG, Klaisz M, Banfalvi G (2004) Gamma irradiation-induced apoptosis in murine pre-B cells prevents the condensation of fibrillar chromatin in early S phase. Apoptosis 9:765–776

    Article  CAS  PubMed  Google Scholar 

  67. Furuya R, Kumagai H, Hishida A (1997) Acquired resistance to rechallenge injury with uranyl acetate in LLC-PK1 cells. J Lab Clin Med 129:347–355

    Article  CAS  PubMed  Google Scholar 

  68. Ujvarosi K, Hunyadi J, Nagy G, Pocsi I, Banfalvi G (2007) Preapoptotic chromatin changes induced by ultraviolet B irradiation in human erythroleukemia K562 cells. Apoptosis 12:2089–2099

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Hungarian Scientific Research Fund (OTKA grant) T42762 grant to G.B. Transmission electron microscopic images of Helix lucorum chromosomes made in 2005 and provided by former PhD students, T. Roszer and G. Nagy are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaspar Banfalvi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banfalvi, G. Apoptotic agents inducing genotoxicity-specific chromatin changes. Apoptosis 19, 1301–1316 (2014). https://doi.org/10.1007/s10495-014-1018-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1018-8

Keywords

Navigation