Skip to main content
Log in

Experimental Study on Hydrodynamic Instability Characteristics of N2-Diluted n-C4H10/Air Flat Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The hydrodynamic instability characteristics of non-adiabatic N2-diluted n-butane/air flames generated on McKenna burner were investigated experimentally under atmosphere pressure. In order to capture the quantitative structure of cellular flames, planar laser induced fluorescence technology (OH-PLIF and CH2O-PLIF) was employed, as well as the chemiluminescence imaging was used to record flame morphology directly. The results show that the hydrodynamic instability of stoichiometric (Φ = 1.0) n-butane/air flames can be significantly enhanced by N2 dilution. In addition, the increased mixture flow velocity and the reduced equivalence ratio of lean mixtures will enhance hydrodynamic instability. Moreover, the observed flame morphologies are connected wrinkles instead of independent-cells with lean and stoichiometric mixtures. It is probable that the wrinkled flames mainly caused by hydrodynamic instability cannot induce the extinction of high-temperature oxidant reaction in concave regions solely due to the weakened effect of preferential diffusion. The instability mechanism analysis shows that, the remarkably reduced local flame speed and the much deformed local flow field ahead of n-butane/air/N2 dilution flames by increasing N2 dilution ratio play an important role in enhancing hydrodynamic instability. It also indicates that the heat loss reduced more in concave regions than in convex regions toward unburnt mixtures is helpful to enhance the suppression effect of hydrodynamic instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

CVCC:

Constant volume combustion chamber

DC:

Digital camera

ICCD:

Intensified charge coupled device

PLIF:

Planar laser induced fluorescence

α :

Thermal diffusivity

β :

Zel’dovich number

δ f :

Flame thickness

λ :

Thermal conductivity

λ max :

Maxmium wavelength of wrinkled flamefront

ρ :

Density

ρ b :

Density of burnt gas

ρ u :

Density of unburnt gas

σ :

Expansion ratio

ω :

Growth rate of perturbation

ω max :

Maximum growth rate of perturbation

ω 0 :

Factor correspond to growth rate

Φ :

Equivalence ratio

c :

Specific heat capacity

k n :

Wavenumber of perturbed flamefront

r N 2 -dilution :

N2 dilution ratio in volume

A :

Flame amplitude

A 0 :

Initial amplitude of perturbation.

B 1 :

Factor correspond to thermal diffusion

B 2 :

Factor correspond to mass diffusion

B 3 :

Factor correspond to viscous diffusion

D :

Diameter of burner exit

E :

Overall activation energy of chemical reaction

L :

Stand-off distance

Le eff :

Effective Lewis number

Le F :

Fuel Lewis number

Le O :

Oxygen Lewis number

Pr :

Prandtl number

R 0 :

Universal gas constant

S L 0 :

Laminar burning velocity of mixture

T a :

Adiabatic flame temperature

T u :

Initial unburnt mixture temperature

U mix :

Mixture flow velocity

A :

Adiabatic

B :

Burnt gas

U :

Unburnt gas

F :

Fuel

O :

Oxygen

References

  • Botha, J., Spalding, D.: The laminar flame speed of propane/air mixtures with heat extraction from the flame. Proc. R. Soc. A Math. Phys. Eng. Sci. 225, 71–96 (1954)

    Google Scholar 

  • Bradley, D., Sheppard, C., Greenhalgh, D., Lockett, R.: The development and structure of flame instabilities and cellularity at low Markstein numbers in explosions. Combust. Flame 122, 195–209 (2000)

    Article  Google Scholar 

  • Bradley, D., Lawes, M., Mumby, R., Ahmed, P.: The stability of laminar explosion flames. Proc. Combust. Inst. 37, 1807–1813 (2019)

    Article  Google Scholar 

  • Buckmaster, J.: Stability of the porous plug burner flame. Siam J. Appl. Math. 43, 1335–1349 (1983)

    Article  MathSciNet  Google Scholar 

  • CHEMKIN-PRO.: Release 15131, Reaction Design, Inc., San Diego, CA (2013)

  • Christiansen, E.W., Sung, C.J., Law, C.K.: Pulsating instability in near-limit propagation of rich hydrogen/air flames. Proc. Combust. Inst. 27, 555–562 (1998)

    Article  Google Scholar 

  • Clanet, C., Searby, G.: First experimental study of the Darrieus-Landau instability. Phys. Rev. Lett. 27, 3867–3870 (1998)

    Article  Google Scholar 

  • Clavin, P.: Dynamic behaviour of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci. 11, 1–59 (1985)

    Article  Google Scholar 

  • Darrieus, G.: Propagation d’un Front de Flamme (Propagation of a Flame Front). La Technique Moderne, Paris (1938)

    Google Scholar 

  • El-Hamdi, M., Gorman, M., Mapp, J.W., Blackshear, J.I.: Stability boundaries of periodic models of propagation in burner-stabilized methane-air flames. Combust. Sci. Technol. 55, 33–40 (1987)

    Article  Google Scholar 

  • Jiang, L., Gu, C., Zhou, G., Li, F., Wang, Q.: Cellular instabilities of n-butane/air flat flames probing by PLIF-OH and PLIF-CH2O laser diagnosis. Exp. Therm. Fluid Sci. 181, 110155 (2020)

    Article  Google Scholar 

  • Jin, W., Wang, J., Nie, Y., Yu, S., Huang, Z.: Experimental study on flame instabilities of laminar premixed CH4/H2/air non-adiabatic flat flames. Fuel 159, 599–606 (2015a)

    Article  Google Scholar 

  • Jin, W., Wang, J., Yu, S., Nie, Y., Xie, Y., Huang, Z.: Cellular instabilities of non-adiabatic laminar flat methane/hydrogen oxy-fuel flames highly diluted with CO2. Fuel 143, 38–46 (2015b)

    Article  Google Scholar 

  • Joulin, G.: On the hydrodynamic stability of flat-burner flames. Combust. Sci. Tech. 53, 315–338 (1987)

    Article  Google Scholar 

  • Konnov, A., Dyakov, I.: Measurement of propagation speeds in adiabatic cellular premixed flames of CH4 + O2 + CO2. Exp. Therm. Fluid Sci. 29, 901–907 (2005)

    Article  Google Scholar 

  • Kurdyumov, V., Matalon, M.: The porous-plug burner: flame stabilization, onset of oscillation, and restabilization. Combust. Flame 153, 105–118 (2008)

    Article  Google Scholar 

  • Lamioni, R., Lapenna, P.E., Troiani, G., Creta, F.: Flame induced flow features in the presence of Darrieus-Landau instability. Flow Turbul. Combust. 101, 1137–1155 (2018)

    Article  Google Scholar 

  • Landau, L.: On the theory of slow combustion. Acta Physicochim. URSS 19(1), 77–85 (1944)

    Google Scholar 

  • Law, C.K., Ishizuka, C.S.P.: On the opening of premixed Bunsen flame tips. Combust. Sci. Technol. 28, 89–96 (1982)

    Article  Google Scholar 

  • Li, X., Zhang, J., Yang, H., Jiang, L., Wang, X., Zhao, D.: Combustion characteristics of non-premixed methane micro-jet flame in coflow air and thermal interaction between flame and micro tube. Appl. Therm. Eng. 112, 296–303 (2017)

    Article  Google Scholar 

  • Markstein, G.: Non-steady Flame Propagation. Pergamon Press, Oxford (1964)

    Google Scholar 

  • Matalon, M.: Flame dynamics. Proc. Combust. Inst. 32, 57–82 (2009)

    Article  Google Scholar 

  • Matalon, M., Metzener, P.: The propagation of premixed flames in closed tubes. J. Fluid Mech. 336, 331–350 (1997)

    Article  MathSciNet  Google Scholar 

  • Poinsot, T.: Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36, 1–28 (2017)

    Article  Google Scholar 

  • Prathap, C., Ray, A., Ravi, M.R.: Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel. Combust. Flame 155, 145–160 (2008)

    Article  Google Scholar 

  • Roder, M., Dreier, T., Schulz, C.: Simultaneous measurement of localized heat-release with OH/CH2O–LIF imaging and spatially integrated OH* chemiluminescence in turbulent swirl flames. Proc. Combust. Inst. 34, 3549–3556 (2013)

    Article  Google Scholar 

  • Sarraf, A.E., Almarcha, C., Quinard, J., Radisson, B., Denet, B.: Quantitative analysis of flame instabilities in a Hele-Shaw burner. Flow Turbul. Combust. 101, 851–868 (2018)

    Article  Google Scholar 

  • Schildmacher, K.U., Koch, R., Bauer, H.J.: Experimental characterization of premixed flame instabilities of a model gas turbine burner. Flow Turbul. Combust. 76, 177–197 (2006)

    Article  Google Scholar 

  • Searby, G., Truffaut, J.M.: Experimental studies of laminar flame instabilities. Lect. Notes Phys. 567, 159–181 (2001)

    Article  Google Scholar 

  • Sivashinsky, G.I.: On a converging spherical flame front. Int. J. Heat Mass Transf. 17, 1499–1506 (1974)

    Article  Google Scholar 

  • Sivashinsky, G.: Instabilities, pattern formation, and turbulence in flames. Annu. Rev. Fluid Mech. 15, 179–199 (1983)

    Article  Google Scholar 

  • Solberg, D.M., Pappas, J.A.S.: Observations of flame instabilities in large scale vented gas explosions. Symp. Combust. 1, 1607–1614 (1981)

    Article  Google Scholar 

  • Vena, P.C., Deschamps, B., Guo, H., Smallwood, G.J., Johnson, M.R.: Heat release rate variations in a globally stoichiometric, stratified iso-octane/air turbulent V-flame. Combust. Flame 162, 944–959 (2015)

    Article  Google Scholar 

  • Wang, Q., Jiang, L., Cai, W., Wu, Y.: Study of UV Rayleigh scattering thermometry for flame temperature field measurement. J. Opt. Soc. Am. B 36(10), 2843–2849 (2019)

    Article  Google Scholar 

  • Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopoulos, F., Law, C. K.: USC Mech Version II. High-temperature combustion reaction model of H2/CO/C1-C4 Compounds (2007). Available at http://ignis.usc.edu/USC_Mech_II.htm

  • Williams, F.A.: Combustion Theroy, 2nd edn. Westview Press, Colorado (1985)

    Google Scholar 

  • Yu, J., Yuan, R., Fan, X., Christensen, M., Konnov, A., Bai, X.: Onset of cellular flame instability in adiabatic CH4/O2/CO2 and CH4/air laminar premixed flames stabilized on a flat-flame burner. Combust. Flame 160, 1276–1286 (2013)

    Article  Google Scholar 

  • Zeldovich, Y.: The Theory of Combustion and Detonation of Gases. USSR Academy of Sciences, Moscow (1944)

    Google Scholar 

Download references

Funding

The authors are grateful to National Basic Research Program of China (2014CB239600) and Science and Technology Planning Project of Guangdong Province of China (No. 2016A040403095) for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiao Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Zhou, G., Huo, J. et al. Experimental Study on Hydrodynamic Instability Characteristics of N2-Diluted n-C4H10/Air Flat Flames. Flow Turbulence Combust 108, 1115–1137 (2022). https://doi.org/10.1007/s10494-021-00303-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-021-00303-9

Keywords

Navigation