Skip to main content
Log in

Flame Induced Flow Features in the Presence of Darrieus-Landau Instability

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The onset of hydrodynamic or Darrieus-Landau (DL) instability can largely impact on premixed flame morphology, turbulent flame speed and induced flow field. In this work, we focus on the latter induced flow by means of two dimensional direct numerical simulations (DNS) of slot burner flames performed in a parametric fashion. Results from linear stability analysis are used to select the adequate parameter range to be investigated. The presence of DL instability is initially assessed using a recently proposed statistical marker related to flame morphology. The differences between stable and unstable flames are then statistically investigated, utilizing a single, laminar, DL-induced corrugation as a reference state. Such DL-induced effects are investigated at various turbulence intensities, in terms of local propagation, induced strain rate patterns and flow field as well as vorticity production and transformation. Using displacement speed as a measure of local propagation, no noticeable statistical difference is observed between stable and unstable flames while strain rate and vorticity patterns are shown to be largely influenced by the DL induced morphology. From the modeling point view, an enhancement of counter gradient type transport for turbulent scalar fluxes is observed for hydrodynamically unstable flames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bilger, R., Pope, S., Bray, K., Driscoll, J.: Paradigms in turbulent combustion research. Proc. Combust. Inst. 30, 21–42 (2005)

    Article  Google Scholar 

  2. Lipatnikov, A.: Fundamentals of premixed turbulent combustion. CRC Press, Boca Raton (2012)

    Book  Google Scholar 

  3. Darrieus, G.: Unpublished work, presented at La Technique Moderne (1945) (1945)

  4. Landau, L.: On the theory of slow combustion. Acta Physicochim. URSS 19, 77–85 (1944)

    Google Scholar 

  5. Sharpe, G.J.: Thermal-diffusive instability of premixed flames for a simple chain-branching chemistry model with finite activation energy. SIAM J. Appl. Math. 70, 866–884 (2009)

    Article  MathSciNet  Google Scholar 

  6. Denet, B., Haldenwang, P.: Numerical study of thermal-diffusive instability of premixed flames. Combust. Sci. Technol. 86, 199–221 (1992)

    Article  Google Scholar 

  7. Boughanem, H., Trouvé, A: The domain of influence of flame instabilities in turbulent premixed combustion. Symp. (Int.) Combust. 27, 971–978 (1998)

    Article  Google Scholar 

  8. Matalon, M.: Intrinsic flame instabilities in premixed and nonpremixed combustion. Annu. Rev. Fluid Mech. 39, 163–191 (2007)

    Article  MathSciNet  Google Scholar 

  9. Sabelnikov, V.A., Lipatnikov, A.N.: Recent advances in understanding of thermal expansion effects in premixed turbulent flames. Annu. Rev. Fluid Mech. 49, 91–117 (2017)

    Article  MathSciNet  Google Scholar 

  10. Law, C.K.: Combustion physics. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  11. Poinsot, T., Veynante, D.: Theoretical and numerical combustion. RT Edwards, Inc., Murarrie (2005)

    Google Scholar 

  12. Klein, M., Chakraborty, N., Ketterl, S.: A comparison of strategies for direct numerical simulation of turbulence chemistry interaction in generic planar turbulent premixed flames. Flow Turbul. Combust. 99, 955–971 (2017)

    Article  Google Scholar 

  13. Hawkes, E.R., Chatakonda, O., Kolla, H., Kerstein, A.R., Chen, J.H.: A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combust. Flame 159, 2690–2703 (2012)

    Article  Google Scholar 

  14. Luca, S., Attili, A., Bisetti, F.: Direct numerical simulations of NOx formation in spatially developing turbulent premixed Bunsen flames with mixture inhomogeneity. AIAA paper 2017–0603 (2017)

  15. Trisjono, P., Pitsch, H.: A direct numerical simulation study on no formation in lean premixed flames. Proc. Combust. Inst. 36, 2033–2043 (2017)

    Article  Google Scholar 

  16. Cecere, D., Giacomazzi, E., Arcidiacono, N., Picchia, F.: Direct numerical simulation of a turbulent lean premixed CH4/h2–air slot flame. Combust. Flame 165, 384–401 (2016)

    Article  Google Scholar 

  17. Wang, H., Hawkes, E.R., Zhou, B., Chen, J.H., Li, Z., Aldén, M.: A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high karlovitz number. Proc. Combust. Inst. 36, 2045–2053 (2017)

    Article  Google Scholar 

  18. Trisjono, P., Pitsch, H.: Systematic analysis strategies for the development of combustion models from DNS: a review. Flow Turbul. Combust. 95, 231–259 (2015)

    Article  Google Scholar 

  19. Yu, R., Bai, X.S., Lipatnikov, A.N.: A direct numerical simulation study of interface propagation in homogeneous turbulence. J. Fluid Mech. 772, 127–164 (2015)

    Article  Google Scholar 

  20. Almarcha, C., Denet, B., Quinard, J.: Premixed flames propagating freely in tubes. Combust. Flame 162, 1225–1233 (2015)

    Article  Google Scholar 

  21. Almarcha, C., Quinard, J., Denet, B., Al-Sarraf, E., Laugier, J.M., Villermaux, E.: Experimental two dimensional cellular flames. Phys. Fluids 27, 091110 (2015)

    Article  Google Scholar 

  22. Troiani, G., Creta, F., Matalon, M.: Experimental investigation of Darrieus–Landau instability effects on turbulent premixed flames. Proc. Combust. Inst. 35, 1451–1459 (2015)

    Article  Google Scholar 

  23. Yang, S., Saha, A., Wu, F., Law, C.K.: Morphology and self-acceleration of expanding laminar flames with flame-front cellular instabilities. Combust. Flame 171, 112–118 (2016)

    Article  Google Scholar 

  24. Altantzis, C., Frouzakis, C.E., Tomboulides, A.G., Matalon, M., Boulouchos, K.: Hydrodynamic and thermodiffusive instability effects on the evolution of laminar planar lean premixed hydrogen flames. J. Fluid Mech. 700, 329–361 (2012)

    Article  Google Scholar 

  25. Fogla, N., Creta, F., Matalon, M.: Effect of folds and pockets on the topology and propagation of premixed turbulent flames. Combust. Flame 162, 2758–2777 (2015)

    Article  Google Scholar 

  26. Frouzakis, C.E., Fogla, N., Tomboulides, A.G., Altantzis, C., Matalon, M.: Numerical study of unstable hydrogen/air flames: shape and propagation speed. Proc. Combust. Inst. 35, 1087–1095 (2015)

    Article  Google Scholar 

  27. Yu, R., Bai, X.S., Bychkov, V.: Fractal flame structure due to the hydrodynamic Darrieus-Landau instability. Phys. Rev. E 92, 063028 (2015)

    Article  Google Scholar 

  28. Creta, F., Lamioni, R., Lapenna, P.E., Troiani, G.: Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation. Phys. Rev. E. 94, 053102 (2016)

    Article  MathSciNet  Google Scholar 

  29. Creta, F., Matalon, M.: Propagation of wrinkled turbulent flames in the context of hydrodynamic theory. J. Fluid Mech. 680, 225–264 (2011)

    Article  MathSciNet  Google Scholar 

  30. Creta, F., Fogla, N., Matalon, M.: Turbulent propagation of premixed flames in the presence of darrieus–landau instability. Combust. Theor. Model. 15, 267–298 (2011)

    Article  Google Scholar 

  31. Creta, F., Matalon, M.: Strain rate effects on the nonlinear development of hydrodynamically unstable flames. Proc. Combust. Inst. 33, 1087–1094 (2011)

    Article  Google Scholar 

  32. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002)

    Article  Google Scholar 

  33. Hult, J., Gashi, S., Chakraborty, N., Klein, M., Jenkins, K.W., Cant, S., Kaminski, C.F.: Measurement of flame surface density for turbulent premixed flames using PLIF and DNS. Proc. Combust. Inst. 31, 1319–1326 (2007)

    Article  Google Scholar 

  34. Veynante, D., Piana, J., Duclos, J., Martel, C.: Experimental analysis of flame surface density models for premixed turbulent combustion. Symp. (Int.) Combust. 26, 413–420 (1996)

    Article  Google Scholar 

  35. Fernández-Galisteo, D., Kurdyumov, V.N., Ronney, P.D.: Analysis of premixed flame propagation between two closely-spaced parallel plates. Combust. Flame 190, 133–145 (2018)

    Article  Google Scholar 

  36. Almarcha, C., Quinard, J., Denet, B., Al-Sarraf, E., Laugier, J.M., Villermaux, E.: Experimental two dimensional cellular flames. Phys. Fluids 27, 091110 (2015)

    Article  Google Scholar 

  37. Clavin, P., Williams, F.A.: Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity. J. Fluid Mech. 116, 251–282 (1982)

    Article  Google Scholar 

  38. Matalon, M., Matkowsky, B.: Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239–259 (1982)

    Article  Google Scholar 

  39. Matalon, M., Cui, C., Bechtold, J.K.: Hydrodynamic theory of premixed flames: effects of stoichiometry, variable transport coefficients and arbitrary reaction orders. J. Fluid Mech. 487, 179–210 (2003)

    Article  MathSciNet  Google Scholar 

  40. Lapenna, P.E., Creta, F.: Mixing under transcritical conditions: an a-priori study using direct numerical simulation. J. Supercrit. Fluids 128, 263–278 (2017)

    Article  Google Scholar 

  41. Lapenna, P.E., Lamioni, R., Ciottoli, P.P., Creta, F.: Low mach number simulation of transcritical flows. AIAA paper 2018–0346 (2018)

  42. Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984)

    Article  Google Scholar 

  43. Fischer, P.F., Lottes, J.W., Kerkemeier, S.G.: nek5000 web page, http://nek5000.mcs.anl.gov (2008)

  44. Kerkemeier, S., Markides, C., Frouzakis, C., Boulouchos, K.: Direct numerical simulation of the autoignition of a hydrogen plume in a turbulent coflow of hot air. J. Fluid Mech. 720, 424–456 (2013)

    Article  Google Scholar 

  45. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)

    Article  Google Scholar 

  46. Lipatnikov, A.N., Chomiak, J., Sabelnikov, V.A., Nishiki, S., Hasegawa, T.: Unburned mixture fingers in premixed turbulent flames. Proc. Combust. Inst. 35, 1401–1408 (2015)

    Article  Google Scholar 

  47. Chakraborty, N., Cant, R.: Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys. Fluids 17, 105105 (2005)

    Article  Google Scholar 

  48. Giannakopoulos, G.K., Gatzoulis, A., Frouzakis, C.E., Matalon, M., Tomboulides, A.G.: Consistent definitions of Flame Displacement Speed and Markstein Length for premixed flame propagation. Combust. Flame 162, 1249–1264 (2015)

    Article  Google Scholar 

  49. Lapenna, P.E., Lamioni, R., Troiani, G., Creta, F.: Large scale effects in weakly turbulent premixed flames. In: Proceedings of the combustion institute under review (2018)

  50. Lamioni, R., Lapenna, P.E., Troiani, G., Creta, F.: Strain rates, flow patterns and flame surface densities in hydrodynamically unstable, weakly turbulent premixed flames. In: Proceedings of the combustion institute under review (2018)

  51. Lipatnikov, A.N., Nishiki, S., Hasegawa, T.: A direct numerical simulation study of vorticity transformation in weakly turbulent premixed flames. Phys. Fluids 26, 105104 (2014)

    Article  Google Scholar 

  52. Bobbitt, B., Blanquart, G.: Vorticity isotropy in high karlovitz number premixed flames. Phys. Fluids 28, 105101 (2016)

    Article  Google Scholar 

  53. Bobbitt, B., Lapointe, S., Blanquart, G.: Vorticity transformation in high karlovitz number premixed flames. Phys. Fluids 28, 015101 (2016)

    Article  Google Scholar 

  54. Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Symp. (Int.) Combust. 27, 917–925 (1998)

    Article  Google Scholar 

  55. Veynante, D., Trouvé, A., Bray, K., Mantel, T.: Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263–293 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Italian Super-Computing Interuniversity Consortium CINECA for support and high-performance computing resources under Grant No.DL-3D-SC/ HP10C4YS8W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Eduardo Lapenna.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamioni, R., Lapenna, P.E., Troiani, G. et al. Flame Induced Flow Features in the Presence of Darrieus-Landau Instability. Flow Turbulence Combust 101, 1137–1155 (2018). https://doi.org/10.1007/s10494-018-9936-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9936-0

Keywords

Navigation