Skip to main content
Log in

Effects of Nozzle Geometry on Turbulent Characteristics and Structure of Surface Attaching Jets

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The effects of nozzle exit geometry on the characteristics of a surface attaching jet were investigated experimentally. Three different types of nozzle geometries were studied, including a circular, square and rectangular nozzle with the same exit area. The jets were discharged with an offset height of two nozzle width at a Reynolds number of 5500. A particle image velocimetry system was used to measure the flow. Instantaneous visualizations revealed that the largest enhancements in the near field mixing and entrainment occur in the minor plane of the rectangular nozzle compared to the square and circular nozzles resulting in more rapid expansion of the shear layer. This also caused a faster deflection of the jet towards the free surface, maximum velocity decay and spread rates of the rectangular jet with minor axis orientation. The jet-surface interaction was examined using surface velocity, vorticity thickness and surface turbulence intensities. It was found that the damping of the surface-normal velocity fluctuations at the free surface is more severe in the minor plane of the rectangular jet than the square and circular nozzles. The influence of the free surface was also felt in the profiles of mean velocity and Reynolds stresses. The attenuation of Reynolds shear stress due to confinement was more dramatic in the minor plane of the rectangular nozzle than the other geometries. To quantify the influence of nozzle geometry on the coherent structures in the interaction region, two-point correlations of the velocity fluctuations and swirling strength; and proper orthogonal decomposition were performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

AP:

attachment point

FOV:

field of view

IA:

interrogation area

PIV:

particle image velocimetry

POD:

proper orthogonal decomposition

RANS:

Reynolds-averaged Navier–Stokes

TKE:

turbulent kinetic energy

References

  1. Madnia, C.K., Bernal, L.P.: Interaction of a turbulent round jet with the free surface. J. Fluid Mech. 261, 305–332 (1994)

    Article  Google Scholar 

  2. Rahman, M.S., Tay, G.F.K., Essel, E.E., Tachie, M.F.: Effects of offset height on the turbulent characteristics of a surface attaching jet. Int. J. Heat Fluid Flow. 71, 305–321 (2018)

    Article  Google Scholar 

  3. Turan, C., Politano, M.S., Carrica, P.M., Weber, L.: Water entrainment due to spillway surface jets. Int. J. Comput. Fluid D. 21(3–4), 137–153 (2007)

    Article  MATH  Google Scholar 

  4. McGuirk, J.J., Rodi, W.: Mathematical modelling of three-dimensional heated surface jets. J. Fluid Mech. 95(4), 609–633 (1979). https://doi.org/10.1017/S0022112079001610

    Article  MATH  Google Scholar 

  5. Mi, J., Nathan, G.J.: Statistical properties of turbulent free jets issuing from nine differently-shaped nozzles. Flow Turbul. Combust. 84, 583–606 (2010)

    Article  MATH  Google Scholar 

  6. Aleyasin, S.S., Tachie, M.F., Koupriyanov, M.: Statistical properties of round, square, and elliptic jets at low and moderate Reynolds numbers. J. Fluids Eng. 139(10), 101206 (2017). https://doi.org/10.1115/1.4036824

    Article  Google Scholar 

  7. Aleyasin, S.S., Tachie, M.F., Koupriyanov, M.: PIV measurements in the near and intermediate field regions of jets issuing from eight different nozzle geometries. Flow Turbul. Combust. 99, 329–351 (2017)

    Article  Google Scholar 

  8. Tay, G.F.K., Rahman, M.S., Tachie, M.F.: Characteristics of a horizontal square jet interacting with the free surface. Phys. Rev. Fluids. 2(6), 064607 (2017). https://doi.org/10.1103/PhysRevFluids.2.064607

    Article  Google Scholar 

  9. Tay, G.F.K., Mishra, A., Kuhn, D.C.S., Tachie, M.F.: Free surface effects on the statistical properties of a submerged rectangular jet. Phys. Fluids. 29, 025101 (2017). https://doi.org/10.1063/1.4975155

    Article  Google Scholar 

  10. Anthony, D.G., Willmarth, W.W.: Turbulence measurement in a round jet beneath a free surface. J. Fluid Mech. 243, 699–720 (1992)

    Article  Google Scholar 

  11. Grinstein, F.F., Gutmark, E., Parr, T.: Near field dynamics of subsonic free square jets. A computational and experimental study. Phys. Fluids. 7(6), 1483–1497 (1995). https://doi.org/10.1063/1.868534

    Article  Google Scholar 

  12. Mi, J., Kalt, P., Nathan, G.J.: On turbulent jets issuing from notched-rectangular and circular orifice plates. Flow Turbul. Combust. 84, 565–582 (2010)

    Article  MATH  Google Scholar 

  13. Ho, C.M., Gutmark, E.: Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet. J. Fluid Mech. 179, 383–405 (1987)

    Article  Google Scholar 

  14. Hussain, F., Husain, H.S.: Elliptic jets. Part 1. Characteristics of unexcited and excited jets. J. Fluid Mech. 208, 257–320 (1989)

    Article  Google Scholar 

  15. Gutmark, E., Grinstein, F.F.: Flow control with noncircular jets. Annu. Rev. Fluid Mech. 31, 239–272 (1999)

    Article  Google Scholar 

  16. Hammond, A.D.: Thrust Losses in Hovering for Jet Vtol Aircraft. Technical Report SP-116, NASA (1966)

  17. Aleyasin, S.S., Fathi, N., Tachie, M.F., Vorobieff, P., Koupriyanov, M.: On the development of incompressible round and equilateral triangular jets due to Reynolds number variation. J. Fluids Eng. 140(11), 111202 (2018). https://doi.org/10.1115/1.4040031

    Article  Google Scholar 

  18. Wallker, D.T., Chen, C.-Y., Willmarth, W.W.: Turbulent structure in free-surface jet flows. J. Fluid Mech. 291, 223–261 (1995)

    Article  Google Scholar 

  19. Tian, J., Roussinova, V., Balachandar, R.: Characteristics of a jet in the vicinity of a free surface. J. Fluids Eng. 134(1–12), 031204 (2012)

    Article  Google Scholar 

  20. Sankar, G., Balachandar, R., Carriveau, R.: Tailwater effects on the characteristics of a square jet near a free-surface. J. Hydraul. Res. 46(4), 504–515 (2008)

    Article  Google Scholar 

  21. Rajaratnam, N., Humphries, J.A.: Turbulent non-buoyant surface jets. J. Hydraul. Res. 22(2), 103–115 (1984)

    Article  Google Scholar 

  22. Ead, S.A., Rajaratnam, N.: Plane turbulent surface jets in shallow tailwater. J. Fluid Eng. 123, 121–127 (2001)

    Article  Google Scholar 

  23. Wen, Q., Kim, H.D., Liu, Y.Z., Kim, K.C.: Dynamic structures of a submerged jet interacting with a free surface. Exp. Thermal Fluid Sci. 57, 396–406 (2014)

    Article  Google Scholar 

  24. Wen, Q., Kim, H.D., Liu, Y.Z., Kim, K.C.: Structure analysis of a low Reynolds number turbulent submerged jet interacting with a free surface. J. Fluids Eng. 136(1–16), 101104 (2014)

    Article  Google Scholar 

  25. Rahman, M.S., Tachie, M.F.: Reynolds number effect on flow characteristics of surface single and twin jets. J. Hydraul. Res. 1–14 (2018). https://doi.org/10.1080/00221686.2018.1522380

  26. Wang, X.K., Tan, S.K.: Experimental investigation of the interaction between a plane wall jet and a parallel offset jet. Exp. Fluids. 42(4), 551–562 (2007)

    Article  Google Scholar 

  27. Coleman, H.W., Steele, W.G.: Engineering application of experimental uncertainty analysis. AIAA J. 33(10), 1888–1896 (1995)

    Article  Google Scholar 

  28. Mi, J., Nathan, G.J., Nobes, D.S.: Mixing characteristics of axisymmetric free jets from a contoured nozzle, an orifice plate and a pipe. J. Fluids Eng. 123(4), 878–883 (2001)

    Article  Google Scholar 

  29. Quinn, W.R.: Experimental study of the near field and transition region of a free jet issuing from a sharp-edged elliptic orifice plate. Eur. J. Mech. B. Fluids. 26, 583–614 (2007)

    Article  MATH  Google Scholar 

  30. Ghasemi, A., Roussinova, V., Balachandar, R., Barron, R.M.: Reynolds number effects in the near-field of a turbulent square jet. Exp. Thermal Fluid Sci. 61, 249–258 (2015)

    Article  Google Scholar 

  31. Capone, A., Soldati, A., Romano, G.P.: Mixing and entrainment in the near field of turbulent round jets. Exp. Fluids. 54(1434), (2013). https://doi.org/10.1007/s00348-012-1434-x

  32. Grinstein, F.F., Devore, C.R.: Dynamics of coherent structures and transition to turbulence in free square jets. Phys. Fluids. 8(5), 1237–1251 (1996). https://doi.org/10.1063/1.868895

    Article  MathSciNet  MATH  Google Scholar 

  33. Mullyadzhanov, R., Abdurakipov, S., Hanjalić, K.: Helical structures in the near field of a turbulent pipe jet. Flow Turbul. Combust. 98(2), 367–388 (2017)

    Article  Google Scholar 

  34. Westerweel, J., Fukushima, C., Pedersen, J.M., Hunt, J.C.R.: Mechanics of turbulent-non-turbulent interface of a jet. Phys. Rev. Lett. 95(17), 174501 (2005). https://doi.org/10.1103/PhysRevLett.95.174501

    Article  Google Scholar 

  35. Quinn, W.R.: Turbulent free jet flows issuing from sharp-edged rectangular slots: the influence of slot aspect ratio. Exp. Thermal Fluid Sci. 5(2), 203–215 (1992)

    Article  Google Scholar 

  36. Burattini, P., Antonia, R.A., Rajagopalan, S., Stephens, M.: Effect of initial conditions on the near-field development of a round jet. Exp. Fluids. 37(1), 56–64 (2004)

    Article  Google Scholar 

  37. Chen, N., Yu, H.: Mechanism of axis switching in low aspect-ratio rectangular jets. Comput. Math. Appl. 67, 437–444 (2014)

    Article  Google Scholar 

  38. Baddour, R.E., Zaghloul, A., Martinuzzi, R.: Entrainment properties of plane surface-jets in shallow current. J. Hydraul. Eng. 132(4), 363–370 (2006)

    Article  Google Scholar 

  39. Quinn, W.R., Militzer, J.: Experimental and numerical study of a turbulent free square jet. Phys. Fluids. 31(5), 1017–1025 (1988)

    Article  Google Scholar 

  40. Wygnanski, I., Fiedler, H.: Some measurements in the self-preserving jet. J. Fluid Mech. 38, 577–612 (1969)

    Article  Google Scholar 

  41. Xu, M., Zhang, J., Mi, J., Nathan, G.J., Kalt, P.A.M.: PIV measurements of turbulent jets issuing from triangular and circular orifice plates. Sci. China Phys. Mech. Astron. 56(6), 1176–1186 (2013)

    Article  Google Scholar 

  42. Ashcroft, G., Zhang, X.: Vortical structures over rectangular cavities at low speed. Phys. Fluids. 17(1), 015104 (2005). https://doi.org/10.1063/1.1833412

    Article  MATH  Google Scholar 

  43. Brown, G.L., Roshko, A.: On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775–816 (1974)

    Article  MATH  Google Scholar 

  44. Essel, E.E., Nematollahi, A., Thacher, E.W., Tachie, M.F.: Effects of upstream roughness and Reynolds number on separated and reattached turbulent flow. J. Turbul. 16(9), 872–899 (2015)

    Article  Google Scholar 

  45. Nematollahi, A., Tachie, M.F.: Time-resolved PIV measurement of influence of upstream roughness on separated and reattached turbulent flows over a forward-facing step. AIP Adv. 8(10), 105110 (2018). https://doi.org/10.1063/1.5063455

    Article  Google Scholar 

  46. Essel, E.E., Tachie, M.F.: Roughness effects on turbulent flow downstream of a backward facing step. Flow Turbul. Combust. 94, 125–153 (2015)

    Article  Google Scholar 

  47. Gentile, V., Schrijer, F.F.J., Oudheusden, B.W.v., Scarano, F.: Afterbody effects on axisymmetric base flows. AIAA J. 54(8), 2285–2294 (2016)

  48. Ukeiley, L., Murray, N.: Velocity and surface pressure measurements in an open cavity. Exp. Fluids. 38, 656–671 (2005)

    Article  Google Scholar 

  49. Bian, S., Driscoll, J.F., Elbing, B.R., Ceccio, S.L.: Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity. Exp. Fluids. 51, 51–63 (2011)

    Article  Google Scholar 

  50. Agelin-Chaab, M., Tachie, M.F.: Characteristics and structure of turbulent 3D offset jets. Int. J. Heat Fluid Flow. 32(3), 608–620 (2011)

    Article  Google Scholar 

  51. Volino, R.J., Schultz, M.P., Flack, K.A.: Turbulence structure in a boundary layer with two-dimensional roughness. J. Fluid Mech. 635, 75–101 (2009)

    Article  MATH  Google Scholar 

  52. Sirovich, L.: Turbulence and the dynamics of coherent structures, part 1: coherent structures. Quart. J. Appl. Math. 45(3), 561–571 (1987)

    Article  MATH  Google Scholar 

  53. Nyantekyi-Kwakye, B., Tachie, M.F., Clark, S., Malenchak, J., Muluye, G.: Experimental study of the flow structures of 3D turbulent offset jets. J. Hydraul. Res. 53(6), 773–786 (2015)

    Article  Google Scholar 

  54. Clark, S.P., Nyantekyi-Kwakye, B., Rahman, M.S., Boila, S., and Tachie, M.F.: Structure of 3D offset jets over a surface mounted square rib. 9th international symposium on turbulence and shear flow phenomena (TSFP-9), June 30–July 3, The University of Melbourne, Australia (2015)

  55. Shinneeb, A.-M., Bugg, J.D., Balachandar, R.: Coherent structures in shallow water jets. J. Fluids Eng. 133, 1–14 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this work by research grants from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shajid Rahman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.S., Tay, G.F.K. & Tachie, M.F. Effects of Nozzle Geometry on Turbulent Characteristics and Structure of Surface Attaching Jets. Flow Turbulence Combust 103, 797–825 (2019). https://doi.org/10.1007/s10494-019-00047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00047-7

Keywords

Navigation