Skip to main content
Log in

In-Cylinder Temperature Measurements in a Motored IC Engine using TDLAS

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

For an improved understanding of the in-cylinder processes in internal combustion (IC) engines, advanced diagnostics are needed to measure the thermodynamic state of the in-cylinder fluid. This is essential to validate numerical simulations which aim at predicting the in-cylinder processes during motored engine operation. Here, knowledge of the in-cylinder temperature is essential, as it strongly influences in-cylinder gas viscosity as well as the in-cylinder mass and thus the peak pressure. This work presents temperature measurements at 2.3 CA resolution of a motored, optically accessible engine by applying tunable diode laser absorption spectroscopy (TDLAS) to in-cylinder water vapor. The temperature was investigated in different heights along the cylinder axis for variations of intake temperature and engine speed. Temperature uncertainties of ± 2.3 K were achieved at various cycle phases, and the absolute temperatures are verified using thermodynamic calculations of simultaneously measured water vapor concentration. The measured temperature dependency is compared to isentropic and polytropic changes of state, the incylinder gas mass is calculated and an estimation of the heat transfer to the walls is given. Based on the in-cylinder mass, different numerical simulations of the engine found in literature are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Buhl, S., Hain, D., Hartmann, F., Hasse, C.: A comparative study of intake and exhaust port modeling strategies for scale-resolving engine simulations. International Journal of Engine Research. https://doi.org/10.1177/1468087417707452 (2017)

  2. He, C., Leudesdorff, W., Di Mare, F., Sadiki, A., Janicka, J.: Analysis of In-cylinder Flow Field Anisotropy in IC Engine using Large Eddy Simulation. Flow Turbulence Combust. https://doi.org/10.1007/s10494-017-9812-3 (2017)

  3. Peterson, B., Baum, E., Böhm, B., Sick, V., Dreizler, A.: Spray-induced temperature stratification dynamics in a gasoline direct-injection engine. Proceedings of the Combustion Institute. https://doi.org/10.1016/j.proci.2014.06.103 (2015)

  4. Peterson, B., Baum, E., Böhm, B., Sick, V., Dreizler, A.: Evaluation of toluene LIF thermometry detection strategies applied in an internal combustion engine. Applied Physics B. https://doi.org/10.1007/s00340-014-5815-0 (2014)

  5. Baum, E., Peterson, B., Böhm, B., Dreizler, A.: On the validation of LES applied to internal combustion engine flows. Part 1: Comprehensive Experimental Database Flow Turbulence Combust. https://doi.org/10.1007/s10494-013-9468-6 (2014)

  6. Janas, P., Wlokas, I., Böhm, B., Kempf, A.: On the evolution of the flow field in a spark ignition engine. Flow Turbulence Combust. https://doi.org/10.1007/s10494-016-9744-3 (2017)

  7. Marr, M.A., Wallace, J.S., Chandra, S., Pershin, L., Mostaghimi, J.: A fast response thermocouple for internal combustion engine surface temperature measurements. Experimental Thermal and Fluid Science. https://doi.org/10.1016/j.expthermflusci.2009.10.008 (2010)

  8. Stenhouse, I.A., Williams, D.R., Cole, J.B., Swords, M.D.: CARS measurements in an internal combustion engine. Applied optics. https://doi.org/10.1364/ao.18.003819 (1979)

  9. Weikl, M.C., Beyrau, F., Leipertz, A.: Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy. Applied Optics. https://doi.org/10.1364/ao.45.003646 (2006)

  10. Birkigt, A., Michels, K., Theobald, J., Seeger, T., Gao, Y., Weikl, M.C., Wensing, M., Leipertz, A.: Investigation of compression temperature in highly charged spark-ignition engines. International Journal of Engine Research. https://doi.org/10.1177/1468087411399216 (2011)

  11. Williams, B., Edwards, M., Stone, R., Williams, J., Ewart, P.: High precision in-cylinder gas thermometry using Laser Induced Gratings. Quantitative measurement of evaporative cooling with gasoline/alcohol blends in a GDI optical engine. Combustion and Flame. https://doi.org/10.1016/j.combustflame.2013.07.018 (2014)

  12. Dec, J.E., Hwang, W.: Characterizing the Development of Thermal Stratification in an HCCI Engine Using Planar-Imaging Thermometry. SAE Int. J Engines. https://doi.org/10.4271/2009-01-0650 (2009)

  13. Kaiser, S.A., Schild, M., Schulz, C.: Thermal stratification in an internal combustion engine due to wall heat transfer measured by laser-induced fluorescence. Proceedings of the Combustion Institute. https://doi.org/10.1016/j.proci.2012.05.059(2013)

  14. Luong, M., Koban, W., Schulz, C.: Novel strategies for imaging temperature distribution using Toluene LIF. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/45/1/017 (2006)

  15. Terzija, N., Karagiannopoulos, S., Begg, S., Wright, P., Ozanyan, K., McCann, H.: Tomographic imaging of the liquid and vapour fuel distributions in a single-cylinder direct-injection gasoline engine. International Journal of Engine Research. https://doi.org/10.1177/1468087414544178 (2015)

  16. Werblinski, T., Kleindienst, S., Engelbrecht, R., Zigan, L., Will, S.: Supercontinuum based absorption spectrometer for cycle-resolved multiparameter measurements in a rapid compression machine. Applied optics. https://doi.org/10.1364/ao.55.004564 (2016)

  17. Bürkle, S., Greifenstein, M., Wagner, S., Dreizler, A., Ebert, V.: Optical sensing of turbine inlet temperature in a pressurized gas turbine combustor. Laser Applications to Chemical, Security and Environmental Analysis, Heidelberg, LT4F.4. https://doi.org/10.1364/LACSEA.2016.LT4F.4

  18. Wang, J., Sanders, S.T., Jeffries, J.B., Hanson, R.K.: Oxygen measurements at high pressures with vertical cavity surface-emitting lasers. Applied Physics B. https://doi.org/10.1007/s003400100539 (2001)

  19. Teichert, H., Fernholz, T., Ebert, V.: Simultaneous in situ measurement of CO, H 2 O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers. Applied Optics. https://doi.org/10.1364/ao.42.002043 (2003)

  20. Witzel, O., Klein, A., Meffert, C., Wagner, S., Kaiser, S., Schulz, C., Ebert, V.: VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines. Optics express. https://doi.org/10.1364/OE.21.019951 (2013)

  21. Rieker, G.B., Li, H., Liu, X., Liu, J., Jeffries, J.B., Hanson, R.K., Allen, M.G., Wehe, S.D., Mulhall, P.A., Kindle, H.S., Kakuho, A., Sholes, K.R., Matsuura, T., Takatani, S.: Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor. Proceedings of the Combustion Institute. https://doi.org/10.1016/j.proci.2006.07.158 (2007)

  22. Kranendonk, L.A., Walewski, J.W., Kim, T., Sanders, S.T.: Wavelength-agile sensor applied for HCCI engine measurements. Proceedings of the Combustion Institute. https://doi.org/10.1016/j.proci.2004.08.211 (2005)

  23. Kranendonk, L.A., An, X., Caswell, A.W., Herold, R.E., Sanders, S.T., Huber, R., Fujimoto, J.G., Okura, Y., Urata, Y.: High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy. Optics Express. https://doi.org/10.1364/oe.15.015115 (2007)

  24. Hagen, C.L., Sanders, S.T.: Investigation of multi-species (H 2 O 2 and H 2 O) sensing and thermometry in an HCCI engine by wavelength-agile absorption spectroscopy. Measurement Science and Technology. https://doi.org/10.1088/0957-0233/18/7/027(2007)

  25. Freudenhammer, D., Peterson, B., Ding, C.-P., Boehm, B., Grundmann, S.: The Influence of Cylinder Head Geometry Variations on the Volumetric Intake Flow Captured by Magnetic Resonance Velocimetry. SAE International Journal Engines. https://doi.org/10.4271/2015-01-1697 (2015)

  26. Wagner, S., Fisher, B.T., Fleming, J.W., Ebert, V.: TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames. Proceedings of the Combustion Institute. https://doi.org/10.1016/j.proci.2008.05.087(2009)

  27. Webber, M.E., Wang, J., Sanders, S.T., Baer, D.S., Hanson, R.K.: In situ combustion measurements of CO, CO2, H2O and temperature using diode laser absorption sensors. Proceedings of the Combustion Institute. https://doi.org/10.1016/s0082-0784(00)80237-4 (2000)

  28. Stritzke, F., van der Kley, S., Feiling, A., Dreizler, A., Wagner, S.: Ammonia concentration distribution measurements in the exhaust of a heavy duty diesel engine based on limited data absorption tomography. Optics express. https://doi.org/10.1364/OE.25.008180 (2017)

  29. Rothman, L.S., Gordon, I.E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P.F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L.R., Campargue, A., Chance, K., Cohen, E.A., Coudert, L.H., Devi, V.M., Drouin, B.J., Fayt, A., Flaud, J.-M., Gamache, R.R., Harrison, J.J., Hartmann, J.-M., Hill, C., Hodges, J.T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R.J., Li, G., Long, D.A., Lyulin, O.M., Mackie, C.J., Massie, S.T., Mikhailenko, S., Müller, H., Naumenko, O.V., Nikitin, A.V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E.R., Richard, C., Smith, M., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G.C., Tyuterev, V., Wagner, G.: The HITRAN2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer. https://doi.org/10.1016/j.jqsrt.2013.07.002 (2013)

  30. Rothman, L.S., Gordon, I.E., Barber, R.J., Dothe, H., Gamache, R.R., Goldman, A., Perevalov, V.I., Tashkun, S.A., Tennyson, J.: HITEMP, the high-temperature molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer. https://doi.org/10.1016/j.jqsrt.2010.05.001 (2010)

  31. Pogány, A., Klein, A., Ebert, V.: Measurement of water vapor line strengths in the 1.4–2.7 μm Range by tunable diode laser absorption spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer. https://doi.org/10.1016/j.jqsrt.2015.06.023 (2015)

  32. Bürkle, S., Dreizler, A., Ebert, V., Wagner, S.: Experimental comparison of a 2D laminar diffusion flame under oxy-fuel and air atmosphere. Fuel. https://doi.org/10.1016/j.fuel.2017.10.067 (2018)

  33. Wagner, W., Pruß, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data. https://doi.org/10.1063/1.1461829 (2002)

  34. Heywood, J.B.: Internal combustion engine fundamentals. McGraw-Hill series in mechanical engineering. McGraw-Hill, New York (1988)

    Google Scholar 

  35. Lapuerta, M., Armas, O., Molina, S.: Study of the compression cycle of a reciprocating engine through the polytropic coefficient. Applied Thermal Engineering. https://doi.org/10.1016/S1359-4311(02)00193-X (2003)

Download references

Acknowledgments

The authors thank the Deutsche Forschungsgemeinschaft for its support through CRC/Transregio 150 “Turbulent, chemically reactive, multi-phase flows near walls”.

Funding

This study was funded by Deutsche Forschungsgemeinschaft (grant number SFB/Transregio 150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Wagner.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bürkle, S., Biondo, L., Ding, CP. et al. In-Cylinder Temperature Measurements in a Motored IC Engine using TDLAS. Flow Turbulence Combust 101, 139–159 (2018). https://doi.org/10.1007/s10494-017-9886-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9886-y

Keywords

Navigation