Skip to main content
Log in

DNS Analysis of Wall Heat Transfer and Combustion Regimes in a Turbulent Non-premixed Wall-jet Flame

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Understanding the heat-release effects on the wall heat transfer in turbulent reacting flows, i.e. heat transfer with or without significant density variation, is essential for a wide variety of industrial flows, especially combustion problems. The present study focuses on the wall heat transfer and the near-wall reaction characteristics. The heat-release effects on the wall heat transfer and skin-friction coefficients are investigated using three-dimensional direct numerical simulations of a turbulent reacting wall-jet flow with and without heat release. Reductions in the skin-friction coefficient are observed in the exothermic case, compared to the isothermal one, and the underlying mechanism is explained. The absolute wall heat flux also increases, while the corresponding Nusselt number decreases with increasing heat release. Furthermore, the wall effects on the near-wall average burning rate are assessed. It is found that the isothermal cold wall results in an appreciable decrease of the burning rate in the exothermic cases. We observed indications that the wall increases the chances for the development of the premixed mode and its occurrence is very fast in the wall-normal direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, H., Kawamura, H., Matsu, Y.: Surface heat-flux fluctuations in a turbulent channel flow up to R e τ =1020 with P r=0.025 and 0.71. Int. J. Heat Fluid Flow 25, 404–419 (2004)

    Article  Google Scholar 

  2. Cao, R.R., Pope, S.B., Masri, A.R.: Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations. Combust. Flame 142, 438–453 (2005)

    Article  Google Scholar 

  3. Chan, W.Y.K., Mee, D.J., Smart, M.K., Turner, J.C., Stalker, R.J.: Boundary layer combustion for viscous drag reduction in practical scramjet configurations. In: 27th International Congress of The Aeronautical Sciences, Nice, France, pp. 1–10 (2010)

  4. Coleman, G.T., Osborne, C., Stollery, J.L.: Heat transfer from a hypersonic turbulent boundary layer on a flat plate. J. Fluid Mech. 60, 257–271 (1973)

    Article  Google Scholar 

  5. Dabireau, F., Cuenot, B., Vermorel, O., Poinsot, T.: Interaction of flames of h 2+ o 2 with inert walls. Combust. Flame 135(1), 123–133 (2003)

    Article  Google Scholar 

  6. Diez, F.J., Dahm, W.J.A.: Effects of heat release on turbulent shear flows. part 3. buoyancy effects due to heat release in jets and plumes. J. Fluid Mech. 575, 221–255 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Domingo, P., Vervisch, L., Re ́veillon, J.: DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air. Combust. Flame 140, 172–195 (2005)

    Article  Google Scholar 

  8. Geers, L.F.G., Hanjalic, K., Tummers, M.: Wall imprint of turbulent structures and heat transfer in multiple impinging jet arrays. J. Fluid Mech. 546, 255–284 (2006)

    Article  MATH  Google Scholar 

  9. Gruber, A., Sankaran, R., Hawkes, E.R., Chen, J.H.: Turbulent flame-wall interaction: a direct numerical simulation study. J. Fluid Mech. 658, 5–32 (2010)

    Article  MATH  Google Scholar 

  10. Hällqvist, T., Fuchs, L.: Numerical study of swirling and non-swirling annular impinging jets with heat transfer. 35th AIAA Fluid Dynamics Conference and Exhibit,Toronto Ontario pp. 2005–5153 (2005)

  11. Huang, P.G., Coleman, G.N., Bradshaw, P.: Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185–218 (1995)

    Article  MATH  Google Scholar 

  12. Jiang, X., Luo, K.H., de Goey, L.P.H., Bastiaans, R.J.M., van Oijen, J.A.: Swirling and impinging effects in an annular nonpremixed jet flame. Flow Turb. Combust. 86, 63–88 (2011)

    Article  MATH  Google Scholar 

  13. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)

    Article  MATH  Google Scholar 

  14. Knaus, R., Pantano, C.: On the effect of heat release in turbulence spectra of non-premixed reacting shear layers. J. Fluid Mech. 626, 67–109 (2009)

    Article  MATH  Google Scholar 

  15. Livescu, D., Jaberi, F.A., Madnia, C.K.: The effects of heat release on energy exchange in reacting turbulent shear flow. J. Fluid Mech. 450, 35–66 (2002)

    Article  MATH  Google Scholar 

  16. Martin, M.P., Candler, G.V.: Temperature-fluctuation scaling in reacting boundary layers. Center for Turbulence Research, Annual Research Briefs. pp. 151–162 (2001)

  17. McMurtry, P.A., Riley, J.J., Metcalfe, R.W.: Effects of heat release on the large-scale structure in turbulent mixing layers. J. Fluid Mech. 199, 297–332 (1989)

    Article  Google Scholar 

  18. Mizobuchi, Y., Tachibana, S., Shinio, J., Ogawa, S., Takeno, T.: A numerical analysis of the structure of a turbulent hydrogen jet lifted flame. Proc. Combust. Inst. 29, 2009–2015 (2002)

    Article  Google Scholar 

  19. Perot, B., Moin, P.: Shear-free turbulent boundary layers. part 1. physical insights into near-wall turbulence. J. Fluid Mech. 295, 199–227 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peters, N.: Turbulent combustion Cambridge University Press (2000)

  21. Pitsch, H.: Large eddy simulation of turbulent combustion. Ann. Rev. Fluid Mech., 453–482 (2006)

  22. Pitsch, H.: Shedding new light on a burning question. J. Fluid Mech. 658, 1–4 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Poinsot, T., Veynante, D.: Theoretical and numerical combustion Edwards (2005)

  24. Pouransari, Z., Biferale, L., Johansson, A.V.: Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets. Phys. Fluids 27, 025–102 (2015)

    Article  Google Scholar 

  25. Pouransari, Z., Brethouwer, G., Johansson, A.V.: Direct numerical simulation of an isothermal reacting turbulent wall-jet, vol. 23 (2011)

  26. Pouransari, Z., Johansson, A.V.: Numerical investigation of wall heat transfer in turbulent reacting wall-jets. In: Tavoularis, S. (ed.) Seventh intern. Symp. on Turbulence and Shear Flow Phenomena (2011)

  27. Pouransari, Z., Velter, G., Ahlman, D., Brethouwer, G., Johansson, A.V.: Direct numerical simulations of non-isothermal and reacting wall-jets. Sixth Intern. Symp. on Turbulence and Shear Flow Phenomena pp. 947–952 (2009)

  28. Pouransari, Z., Vervisch, L., Johansson, A.: Heat release effects on mixing scales of non-premixed turbulent wall-jets: a DNS study. Int. J. Heat and Fluid Flows 40, 65–80 (2013)

    Article  Google Scholar 

  29. Pouransari, Z., Vervisch, L., Johansson, A.V.: Analysis of combustion modeling tools using DNS of a non-premixed turbulent wall-jet. Seventh Intern. Symp. Turbulence Heat Mass Transfer, Sicily Italy 7, 705–708 (2012)

    Google Scholar 

  30. Pouransari, Z., Vervisch, L., Johansson, A.V.: Reynolds number effects on statistics and structure of an isothermal reacting turbulent wall-jet. Flow Turb. Combust 92, 931–945 (2014)

    Article  Google Scholar 

  31. Ruetsch, G.R., Vervisch, L., Linan, A.: Effects of heat release on triple flames. Phys. Fluids 7, 1447–1454 (1995)

    Article  Google Scholar 

  32. Seidel, J., Fasel, H.F.: Numerical investigations of heat transfer mechanisms in the forced laminar wall jet. J. Fluid Mech. 442, 191–215 (2001)

    Article  MATH  Google Scholar 

  33. Suraweera, M., Mee, D., Stalker, R.: Skin Friction Reduction in Hypersonic Turbulent Flow by Boundary Layer Combustion. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno Nevada (2005)

  34. T. Dakos, C.A.V., Gibson, M.M.: Turbulent flow with heat transfer in plane and curved wall jets. J. Fluid Mech. 145, 339–360 (1984)

    Article  Google Scholar 

  35. Tachie, M. F., Balachandar, R., Bergstrom, D.J.: Roughness effects on turbulent plane wall jets in an open channel. Exp. Fluids 37, 281–292 (2004)

    Article  Google Scholar 

  36. Vervisch, L., Poinsot, T.: Direct numerical simulation of non-premixed turbulent flames. Annu. Rev. Fluid Mech. 30, 655–691 (1998)

    Article  MathSciNet  Google Scholar 

  37. Zhang, Y., Bi, W.T., Hussain, F., She, Z.: A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392–420 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Pouransari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouransari, Z., Vervisch, L., Fuchs, L. et al. DNS Analysis of Wall Heat Transfer and Combustion Regimes in a Turbulent Non-premixed Wall-jet Flame. Flow Turbulence Combust 97, 951–969 (2016). https://doi.org/10.1007/s10494-016-9716-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9716-7

Keywords

Navigation