Skip to main content
Log in

Investigation on Secondary Flow Characteristics in a Curved Annular Duct with Struts

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Under the influence of duct curvature, cross-sectional area variation and internal struts, the internal flow field within a curved annular duct becomes rather complicated and contains strong secondary flow. In this paper, the secondary flow characteristics in an annular duct with struts are experimentally and numerically investigated. The results show that large pressure gradients exist on the bends of hub and shroud. Meanwhile, two counter-rotating vortex pairs appear both along the hub-side and shroud-side surfaces. The hub-side vortex pair of which the vortex cores travel downstream parallelly evolves from the horseshoe vortex which is induced by the leading edge of the upstream strut, whereas the shroud-side vortex pair originates from the strut trailing edge and the corresponding vortex cores develop in a divergent way. Additionally, the effects of the duct exit Mach number on the secondary flow characteristics are also studied. As the exit Mach number increases, the streamwise pressure gradients increase and lead to more intense vortices, higher total pressure loss and larger flow distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sorensen, N.E., Smeltzer, D.B.: Study of two axisymmetric inlets for mach 3.5. AIAA 1976-0204 (1976)

  2. Wei, R.L.J., Sanders, B.W.: A new design concept for supersonic axisymmetric inlets. In: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, AIAA paper 2002-3775 (2002). doi:10.2514/6.2002-3775

  3. Vittal, B.V.R., Tipton, D.L., Bennett, W.A.: Development of an advanced vaneless inlet particle separator for helicopter engines. J Propulsion Power 2(5), 438–444 (1986). doi:10.2514/3.22926

    Article  Google Scholar 

  4. Breitman, D.S., Dueck, E.G., Habashi, W.G.: Analysis of a split-flow inertial particle separator by finite elements. J Aircraft 22(2), 135–140 (1985). doi: 10.2514/3.45097

    Article  MATH  Google Scholar 

  5. Al-Faris, E.F., Saeed, F.: Design and optimization method for inertial particle separator (ips) system. In: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, British Columbia Canada, AIAA Paper 2008-6066 (2008). doi:10.2514/1.40921

  6. Smith, C.F.: Six sigma methods applied to an inlet particle separator design. In: 13th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Texas, America, AIAA Paper 2010-9398 (2010). doi:10.2514/6.2010-9398

  7. Ortiz, D.C., Miller, R.J., Hodson, H.P.: Effect of length on compressor inter-stage duct performance. In: Proceedings of ASME Turbo Expo 2007: Power for Land, Sea and Air, Montreal, Canada, ASME paper GT2007-27378 (2007). doi:10.1115/GT2007-27752

  8. Walker, A.D., Barker, A.G., Carrotte, J.F.: Integreted outlet guide vane design for an aggressive s-shaped compressor transition duct. In: Proceedings of ASME Turbo Expo 2011, British Columbia, Canada, ASME Paper, GT2011-45627 (2011)

  9. Wu, Y.D., Li, B., Chen, Y.Y.: Automated design optimization and experimental validation for intermediate casing duct of aeroengine. In: Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, Texas, USA, ASME Paper GT2013-94137 (2013). doi:10.1115/GT2013-94137

  10. Axelsson, L.U., Osso, C.A., Cadrecha, D.: Design, performance evaluation and end wall flow structure investigation of an s-shaped intermediate turbine duct. In: Proceedings of ASME Turbo Expo 2007: Power for Land, Sea and Air, Montreal, Canada, ASME paper GT2007-27650 (2007). doi:10.1115/GT2007-27650

  11. Wallin, F., Arroyo, O.C., Johansson, T.G.: Experimental and numerical investigation of an aggressive intermediate turbine duct: part ihflowfield at design inlet conditions. In: 26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, AIAA paper AIAA 2008-7055 (2008). doi:10.2514/6.2008-7056

  12. Marn, A., Gottlich, E., Malzacher, F., Heitmeir, F.: Comparison between the flow through an aggressive and a super-aggressive intermediate turbine duct. ISABE, 2009–1259 (2009)

  13. Doerffer, P., Flaszynski, P., Magagnato, F.: Streamwise vortex interaction with a horseshoe vortex. Int. J. Therm. Sci. 12(4), 304–309 (2003). doi:10.1007/s11630-003-0035-7

    Article  Google Scholar 

  14. Paik, J., Escauriaza, C., Sotiropoulos, F.: On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. Phys. Fluids 19(4), 1–20 (2007). doi:10.1063/1.2716813. 045107

    Article  MATH  Google Scholar 

  15. Gand, F., Deck, S., Brunet, V., Sagaut, P.: Flow dynamics past a simplified wing body junction. Phys. Fluids 22(11), 1–16 (2010). doi:10.1063/1.3500697. 115111

    Article  Google Scholar 

  16. Andoh, M., Motosuke, M., Honami, S.: Interaction of longitudinal vortex with horseshoe vortex. In: 39th AIAA Fluid Dynamics Conference, San Antonia, Texas, AIAA paper 2009-4176 (2009). doi:10.2514/6.2009-4176

  17. Hu, S.Z., Zhang, Y.F., Zhang, X.F., Vlasic, E.: Influence of inlet swirl distributions on an inter-turbine duct-part i: casing swirl variation. In: Proceedings of ASME Turbo Expo 2007, British Columbia, Canada, ASME Paper, IGTI GT2011-45554 (2011). doi:10.1115/GT2011-45554

  18. Zhang, Y.F., Hu, S.Z., Zhang, X.F., Vlasic, E.: Influence of inlet swirl distributions on an inter-turbine duct- part ii: hub swirl variation. In: Proceedings of ASME Turbo Expo 2011, British Columbia, Canada, ASME Paper, IGTI GT2011-45555 (2011). doi:10.1115/GT2011-45555

  19. Bailey, D.W., Britchford, K.M., Carrotte, J.F., Stevens, S.J.: Performance Assessment of an Annular S-Shaped. Duct. J. Turbomach 119, 149–156 (1997)

    Article  Google Scholar 

  20. Sonoda, T., Arima, T., Oana, M.: The influence of downstream passage on the flow within an s-shaped duct. J Turbomach 120(4), 714–722 (1998). doi:10.1115/1.2841782

    Article  Google Scholar 

  21. Sonoda, T., Arima, T., Oana, M.: The effect of inlet boundary layer thickness on the flow within an annular s-shaped duct. J Turbomach 121(3), 626–634 (1999). doi:10.1115/1.2841361

    Article  Google Scholar 

  22. Jones, W.P., Launder, B.E.: The prediction of laminarization with a two equation model of turbulence. Int. J. Heat Mass Transf. 15(2), 301—314 (1972)

    Article  Google Scholar 

  23. Zhao, Y., Wang, G.Y., Huang, B., Hu, C.L.: Applications of a curvature correction turbulent model for computations of unsteady cavitating flows. In: International Symposium of Cavitation and Multiphase Flow (ISCM 2014). doi:10.1088/1757-899X/72/2/022006

  24. Britchford, K.M., Manners, A.P., McGuirk, J.J., Stevens, S.J.: Measurement and Prediction of Flow in Annular S-Shaped Ducts. Exp. Therm. Fluid Sci 9(2), 197–205 (1994)

    Article  Google Scholar 

  25. Naylor, E.M.J., Ortiz, D.C., Miller, R.J., Hodson, H.P.: Optimization of Nonaxisymmetric Endwalls in Compressor S-Shaped Ducts. In: Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air, Berlin, Germany, ASME paper GT2008 (2008)

  26. Karim Abdulla-Altaii, A., Raj, R.S.: Secondary flow development downstream of a blade endwall corner. In: ASME 1994 International Gas Turbine and Areoengine Congress and Exposition, Hague, Netherland, ASME Paper, No.94-GT-459 (1994). doi:10.1115/94-GT-459

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, H.X., Tan, H.J., Chen, H. et al. Investigation on Secondary Flow Characteristics in a Curved Annular Duct with Struts. Flow Turbulence Combust 97, 27–44 (2016). https://doi.org/10.1007/s10494-015-9674-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9674-5

Keywords

Navigation