Skip to main content
Log in

Chebyshev polynomial-based Ritz method for thermal buckling and free vibration behaviors of metal foam beams

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams. The analyses include three models for porosity distribution and two scenarios for thermal distribution. The material properties are assessed under two conditions, i.e., temperature dependence and temperature independence. The theoretical framework for the beams is based on the higher-order shear deformation theory, which incorporates shear deformations with higher-order polynomials. The governing equations are established from the Lagrange equations, and the beam displacement fields are approximated by the Chebyshev polynomials. Numerical simulations are performed to evaluate the effects of thermal load, slenderness, boundary condition (BC), and porosity distribution on the buckling and vibration behaviors of metal foam beams. The findings highlight the significant influence of temperature-dependent (TD) material properties on metal foam beams’ buckling and vibration responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PATEL, P., BHINGOLE, P., and MAKWANA, D. Manufacturing, characterization and applications of lightweight metallic foams for structural applications. Materials Today: Proceedings, 5, 20391–20402 (2018)

    Google Scholar 

  2. DA, C., KANG, G., JIE, Y., and LIHAI, Z. Functionally graded porous structures: analyses, performances, and applications—a review. Thin-Walled Structures, 191, 111046 (2023)

    Article  Google Scholar 

  3. ZHANG, P., SCHIAVONE, P., and QING, H. Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model. Applied Mathematics and Mechanics (English Edition), 44(12), 2071–2092 (2023) https://doi.org/10.1007/s10483-023-3059-9

    Article  MathSciNet  Google Scholar 

  4. YAS, M. H. and RAHIMI, S. Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets. Applied Mathematics and Mechanics (English Edition), 41(8), 1209–1226 (2020) https://doi.org/10.1007/s10483-020-2634-6

    Article  MathSciNet  Google Scholar 

  5. YUAN, W., LIAO, H., GAO, R., and LI, F. Vibration and sound transmission loss characteristics of porous foam functionally graded sandwich panels in thermal environment. Applied Mathematics and Mechanics (English Edition), 44(6), 897–916 (2023) https://doi.org/10.1007/s10483-023-3004-7

    Article  MathSciNet  Google Scholar 

  6. TUNG, H. V. and TRANG, L. T. N. Nonlinear stability of advanced sandwich cylindrical shells comprising porous functionally graded material and carbon nanotube reinforced composite layers under elevated temperature. Applied Mathematics and Mechanics (English Edition), 42(9), 1327–1348 (2021) https://doi.org/10.1007/s10483-021-2771-6

    Article  MathSciNet  Google Scholar 

  7. KHADER, M. M. and MEGAHED, A. M. Differential transformation method for studying flow and heat transfer due to stretching sheet embedded in porous medium with variable thickness, variable thermal conductivity, and thermal radiation. Applied Mathematics and Mechanics (English Edition), 35(11), 1387–1400 (2014) https://doi.org/10.1007/s10483-014-1870-7

    Article  MathSciNet  Google Scholar 

  8. HAN, X. H., WANG, Q., PARK, Y. G., T’JOEN, C., SOMMERS, A., and JACOBI, A. A review of metal foam and metal matrix composites for heat exchangers and heat sinks. Heat Transfer Engineering, 33, 991–1009 (2012)

    Article  Google Scholar 

  9. CHEN, C., LI, D., ZHOU, X., and ZHOU, L. Thermal vibration analysis of functionally graded graphene platelets-reinforced porous beams using the transfer function method. Engineering Structures, 284, 115963 (2023)

    Article  Google Scholar 

  10. EL HARTI, K., RAHMOUNE, M., SANBI, M., SAADANI, R., BENTALEB, M., and RAHMOUNE, M. Dynamic control of Euler Bernoulli FG porous beam under thermal loading with bonded piezoelectric materials. Ferroelectrics, 558, 104–116 (2020)

    Article  Google Scholar 

  11. ŞEREF, D. A. Nonlinear static analysis of functionally graded porous beams under thermal effect. Coupled Systems Mechanics, 6, 399–415 (2017)

    Google Scholar 

  12. ŞEREF, D. A. Thermal effects on the vibration of functionally graded deep beams with porosity. International Journal of Applied Mechanics, 9, 1750076 (2017)

    Article  Google Scholar 

  13. REZAIEE-PAJAND, M., RAJABZADEH-SAFAEI, N., and MASOODI, A. R. An efficient curved beam element for thermo-mechanical nonlinear analysis of functionally graded porous beams. Structures, 28, 1035–1049 (2020)

    Article  Google Scholar 

  14. PHAM, Q. H., TRAN, V. K., and NGUYEN, P. C. Hygro-thermal vibration of bidirectional functionally graded porous curved beams on variable elastic foundation using generalized finite element method. Case Studies in Thermal Engineering, 40, 102478 (2022)

    Article  Google Scholar 

  15. PATIL, H. B., PITCHAIMANI, J., and MAILAN-CHINNAPANDI, L. B. Buckling and free vibration of porous functionally graded metal ceramic beams under thermal and mechanical loading: a comparative study. Journal of The Institution of Engineers (India): Series C, 102, 1107–1117 (2021)

    Google Scholar 

  16. MOHD, F. and TALHA, M. Effect of graphene platelets reinforcement on vibration behavior of functionally graded porous arches under thermal environment. Materials Today: Proceedings, 61, 103–109 (2022)

    Google Scholar 

  17. IASIELLO, M., BIANCO, N., CHIU, W. K. S., and NASO, V. The effects of variable porosity and cell size on the thermal performance of functionally-graded foams. International Journal of Thermal Sciences, 160, 106696 (2021)

    Article  Google Scholar 

  18. BELLIFA, H., SELIM, M. M., CHIKH, A., BOUSAHLA, A. A., BOURADA, F., TOUNSI, A., BENRAHOU, K. H., AL-ZAHRANI, M. M., and TOUNSI, A. Influence of porosity on thermal buckling behavior of functionally graded beams. Smart Structures and Systems, 27, 719–728 (2021)

    Google Scholar 

  19. LI, Y. S., LIU, B. L., and ZHANG, J. J. Hygro-thermal buckling of porous FG nanobeams considering surface effects. Structural Engineering Mechanics, 79, 359–371 (2021)

    Google Scholar 

  20. EBRAHIMI, F. and JAFARI, A. Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory. Structural Engineering and Mechanics, 59, 343–371 (2016)

    Article  Google Scholar 

  21. EBRAHIMI, F. and DAMAN, M. Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment. Structural Engineering Mechanics, 64, 121–133 (2017)

    Google Scholar 

  22. BARATI, M. R. Investigating dynamic response of porous inhomogeneous nanobeams on hybrid Kerr foundation under hygro-thermal loading. Applied Physics A, 123, 1–14 (2017)

    Article  Google Scholar 

  23. EBRAHIMI, F. and JAFARI, A. A four-variable refined shear-deformation beam theory for thermo-mechanical vibration analysis of temperature-dependent FGM beams with porosities. Mechanics of Advanced Materials and Structures, 25, 212–224 (2018)

    Article  Google Scholar 

  24. AMIR, S., SOLEIMANI-JAVID, Z., and ARSHID, E. Size-dependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 99, e201800334 (2019)

    Article  MathSciNet  Google Scholar 

  25. CHAREF, T., BACHIR-BOUIADJRA, R., SEKKAL, M., BACHIRI, A., BENYOUCEF, S., SALEH, M. M. S., TOUNSI, A., and HUSSAIN, M. Assessing the impact of different foundations on the thermodynamic response of bidirectional FG porous beams. Arabian Journal of Geosciences, 16, 48 (2023)

    Article  Google Scholar 

  26. SU, S. and HUANG, H. Thermal-mechanical coupling buckling analysis of porous functionally graded beams. Acta Materiae Compositae Sinica, 34, 2794–2799 (2017)

    Google Scholar 

  27. MIRJAVADI, S. S., MATIN, A., SHAFIEI, N., RABBY, S., and MOHASEL-AFSHARI, B. Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam. Journal of Thermal Stresses, 40, 1201–1214 (2017)

    Article  Google Scholar 

  28. YAS, M. and RAHIMI, S. Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets. Applied Mathematics and Mechanics (English Edition), 41(8), 1209–1226 (2020) https://doi.org/10.1007/s10483-020-2634-6

    Article  MathSciNet  Google Scholar 

  29. YAS, M. and RAHIMI, S. Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using generalized differential quadrature method. Aerospace Science Technology, 107, 106261 (2020)

    Article  Google Scholar 

  30. ANSARI, R., FARAJI-OSKOUIE, M., NESARHOSSEINI, S., and ROUHI, H. Nonlinear thermally induced vibration analysis of porous FGM Timoshenko beams embedded in an elastic medium. Transport in Porous Media, 142, 63–87 (2022)

    Article  Google Scholar 

  31. ANSARI, R., OSKOUIE, M. F., and ZARGAR, M. Hygrothermally induced vibration analysis of bidirectional functionally graded porous beams. Transport in Porous Media, 142, 41–62 (2022)

    Article  Google Scholar 

  32. RAHEEF, K. M., AHMED, R. A., NAYEEIF, A. A., FENJAN, R. M., and FALEH, N. M. Analyzing dynamic response of nonlocal strain gradient porous beams under moving load and thermal environment. Geomechanics Engineering, 26, 89–99 (2021)

    Google Scholar 

  33. BABAEI, H., ESLAMI, M., and KHORSHIDVAND, A. Thermal buckling and postbuckling responses of geometrically imperfect FG porous beams based on physical neutral plane. Journal of Thermal Stresses, 43, 109–131 (2020)

    Article  Google Scholar 

  34. JAMSHIDI, M. and ARGHAVANI, J. Optimal material tailoring of functionally graded porous beams for buckling and free vibration behaviors. Mechanics Research Communications, 88, 19–24 (2018)

    Article  Google Scholar 

  35. DA, C., JIE, Y., and SRITAWAT, K. Free and forced vibrations of shear deformable functionally graded porous beams. International Journal of Mechanical Sciences, 108, 14–22 (2016)

    Google Scholar 

  36. DA, C., JIE, Y., and SRITAWAT, K. Elastic buckling and static bending of shear deformable functionally graded porous beam. Composite Structures, 133, 54–61 (2015)

    Article  Google Scholar 

  37. NGUYEN, N. D., NGUYEN, T. N., NGUYEN, T. K., and VO, T. P. A new two-variable shear deformation theory for bending, free vibration and buckling analysis of functionally graded porous beams. Composite Structures, 282, 115095 (2022)

    Article  Google Scholar 

  38. NGUYEN, N. D., NGUYEN, T. N., NGUYEN, T. K., and VO, T. P. A Chebyshev-Ritz solution for size-dependent analysis of the porous microbeams with various boundary conditions. International Journal of Mechanics and Materials in Design, 19, 861–881 (2023)

    Article  Google Scholar 

  39. NGUYEN, N. D., NGUYEN, T. N., NGUYEN, T. K., and VO, T. P. A Legendre-Ritz solution for bending, buckling and free vibration behaviours of porous beams resting on the elastic foundation. Structures, 50, 1934–1950 (2023)

    Article  Google Scholar 

  40. JENA, S. K., CHAKRAVERTY, S., and MALIKAN, M. Application of shifted Chebyshev polynomial-based Rayleigh-Ritz method and Navier’s technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation. Engineering with Computers, 37, 3569–3589 (2021)

    Article  Google Scholar 

  41. EIADTRONG, S., WATTANASAKULPONG, N., and VO, T. P. Thermal vibration of functionally graded porous beams with classical and non-classical boundary conditions using a modified Fourier method. Acta Mechanica, 234, 729–750 (2023)

    Article  MathSciNet  Google Scholar 

  42. WATTANASAKULPONG, N., THAI, S., and EIADTRONG, S. Analyses on thermal vibration and stability of sandwich skew plates with functionally graded porous core. Structures, 58, 105536 (2023)

    Article  Google Scholar 

  43. NGUYEN, Q. K. and NGUYEN, N. D. Legendre-Ritz solution for free vibration and buckling analysis of porous microbeams. Journal of Vibration Engineering & Technologies (2023) https://doi.org/10.1007/s42417-023-01148-4

  44. NGUYEN, N. D., NGUYEN, T. N., TRINH, L. C., and NGUYEN, T. K. A higher-order shear deformation theory and modified couple stress theory for size-dependent analysis of porous microbeams resting on the foundation. International Journal of Structural Stability and Dynamics, (2023)

  45. TOULOUKIAN, Y. S. Thermophysical Properties of High Temperature Solid Materials, Macmillan, New York (1967)

    Google Scholar 

  46. REDDY, J. and CHIN, C. Thermomechanical analysis of functionally graded cylinders and plates. Journal of thermal Stresses, 21(6), 593–626 (1998)

    Article  Google Scholar 

  47. CHEN, Y., JIN, G., ZHANG, C., YE, T., and XUE, Y. Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory. Composites Part B: Engineering, 153, 376–386 (2018)

    Article  Google Scholar 

  48. REDDY, J. A general non-linear third-order theory of plates with moderate thickness. International Journal of Non-Linear Mechanics, 25(6), 677–686 (1990)

    Article  Google Scholar 

  49. GIBSON, L. J. Cellular solids. Mrs Bulletin, 28(4), 270–274 (2003)

    Article  Google Scholar 

  50. REDDY, J. N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  51. WATTANASAKULPONG, N., PRUSTY, B. G., and KELLY, D. W. Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams. International Journal of Mechanical Sciences, 53(9), 734–743 (2011)

    Article  Google Scholar 

  52. MORENO-GARCÍA, P., DOS SANTOS, J. V. A., and LOPES, H. A review and study on Ritz method admissible functions with emphasis on buckling and free vibration of isotropic and anisotropic beams and plates. Archives of Computational Methods in Engineering, 25(3), 785–815 (2018)

    Article  MathSciNet  Google Scholar 

  53. NGUYEN, T. K., NGUYEN, N. D., VO, T. P., and THAI, H. T. Trigonometric-series solution for analysis of laminated composite beams. Composite Structures, 160, 142–151 (2017)

    Article  Google Scholar 

  54. ŞIMŞEK, M. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design, 240(4), 697–705 (2010)

    Article  Google Scholar 

  55. NGUYEN, T. K., NGUYEN, T. T. P., VO, T. P., and THAI, H. T. Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory. Composites Part B: Engineering, 76, 273–285 (2015)

    Article  Google Scholar 

  56. AYDOGDU, M. Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method. International Journal of Mechanical Sciences, 47(11), 1740–1755 (2005)

    Article  Google Scholar 

  57. WATTANASAKULPONG, N., PRUSTY, B. G., KELLY, D. W., and HOFFMAN, M. Free vibration analysis of layered functionally graded beams with experimental validation. Materials & Design, 36, 182–190 (2012)

    Article  Google Scholar 

  58. VESCOVINI, R., DOZIO, L., D’OTTAVIO, M., and POLIT, O. On the application of the Ritz method to free vibration and buckling analysis of highly anisotropic plates. Composite Structures, 192, 460–474 (2018)

    Article  Google Scholar 

  59. NGUYEN, T. K., NGUYEN, B. D., VO, T. P., and THAI, H. T. Hygro-thermal effects on vibration and thermal buckling behaviours of functionally graded beams. Composite Structures, 176, 1050–1060 (2017)

    Article  Google Scholar 

  60. MANTARI, J. and CANALES, F. Free vibration and buckling of laminated beams via hybrid Ritz solution for various penalized boundary conditions. Composite Structures, 152, 306–315 (2016)

    Article  Google Scholar 

  61. TRAN, T. T., NGUYEN, N. H., DO, T. V., MINH, P. V., and DUC, N. D. Bending and thermal buckling of unsymmetric functionally graded sandwich beams in high-temperature environment based on a new third-order shear deformation theory. Journal of Sandwich Structures & Materials, 23(3), 906–930 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Nguyen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.D., Nguyen, T.N. Chebyshev polynomial-based Ritz method for thermal buckling and free vibration behaviors of metal foam beams. Appl. Math. Mech.-Engl. Ed. 45, 891–910 (2024). https://doi.org/10.1007/s10483-024-3116-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-024-3116-5

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation