Skip to main content
Log in

Love wave propagation in one-dimensional piezoelectric quasicrystal multilayered nanoplates with surface effects

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The exact solutions for the propagation of Love waves in one-dimensional (1D) hexagonal piezoelectric quasicrystal (PQC) nanoplates with surface effects are derived. An electro-elastic model is developed to investigate the anti-plane strain problem of Love wave propagation. By introducing three shape functions, the wave equations and electric balance equations are decoupled into three uncorrelated problems. Satisfying the boundary conditions of the top surface on the covering layer, the interlayer interface, and the matrix, a dispersive equation with the influence of multi-physical field coupling is provided. A surface PQC model is developed to investigate the surface effects on the propagation behaviors of Love waves in quasicrystal (QC) multilayered structures with nanoscale thicknesses. A novel dispersion relation for the PQC structure is derived in an explicit closed form according to the non-classical mechanical and electric boundary conditions. Numerical examples are given to reveal the effects of the boundary conditions, stacking sequence, characteristic scale, and phason fluctuation characteristics on the dispersion curves of Love waves propagating in PQC nanoplates with surface effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHITE, R. M. and VOLTMER, F. W. Direct piezoelectric coupling to surface elastic waves. Applied Physics Letters, 7(12), 314–316 (1965)

    Article  Google Scholar 

  2. DU, J. K., JIN, X., and WANG, J. Love wave propagation in layered magnetoelectro-elastic structures. Science in China Series G: Physics, Mechanics and Astronomy, 51(6), 617–631 (2008)

    Article  Google Scholar 

  3. DU, J. K., JIN, X. Y., and WANG, J. Love wave propagation in layered magneto-electro-elastic structures with initial stress. Acta Mechanica, 192(1), 169–189 (2007)

    Article  Google Scholar 

  4. QIAN, Z., JIN, F., WANG, Z., and KISHIMOTO, K. Love waves propagation in a piezoelectric layered structure with initial stresses. Acta Mechanica, 171(1), 41–57 (2004)

    Google Scholar 

  5. LIU, J. X., FANG, D. N., WEI, W. Y., and ZHAO, X. F. Love waves in layered piezoelectric/piezomagnetic structures. Journal of Sound and Vibration, 315(1–2), 146–156 (2008)

    Article  Google Scholar 

  6. SUN, X. Y., CHEN, T. T., LIANG, Y., ZHANG, C., ZHAI, S. P., SUN, J. H., and WANG, W. Enhanced sensitivity of SAW based ammonia sensor employing GO-SnO2 nanocomposites. Sensors and Actuators B: Chemical, 375, 132884 (2023)

    Article  Google Scholar 

  7. GURTIN, M. E. and MURDOCH, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  8. ZHANG, C. L., CHEN, W. Q., and ZHANG, C. Z. On propagation of anti-plane shear waves in piezoelectric plates with surface effect. Physics Letters A, 376(45), 3281–3286 (2012)

    Article  Google Scholar 

  9. WU, B., ZHANG, C. L., CHEN, W. Q., and ZHANG, C. Z. Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates. Smart Materials and Structures, 24(9), 095017 (2015)

    Article  Google Scholar 

  10. SHODJA, H. M., GHAFAROLLAHI, A., and ENZEVAEE, C. Surface/interface effect on the scattering of Love waves by a nano-size surface-breaking crack within an ultra-thin layer bonded to an elastic half-space. International Journal of Solids and Structures, 108, 63–73 (2017)

    Article  Google Scholar 

  11. ENZEVAEE, C. and SHODJA, H. M. Crystallography and surface effects on the propagation of Love and Rayleigh surface waves in fcc semi-infinite solids. International Journal of Solids and Structures, 138, 109–117 (2018)

    Article  Google Scholar 

  12. ZHANG, S. J., GU, B., ZHANG, H. B., FENG, X. Q., PAN, R. Y., and HU, N. Propagation of Love waves with surface effects in an electrically-shorted piezoelectric nanofilm on a half-space elastic substrate. Ultrasonics, 66, 65–71 (2016)

    Article  Google Scholar 

  13. WANG, X., LI, P., and JIN, F. A generalized dynamic model of nanoscale surface acoustic wave sensors and its applications in Love wave propagation and shear-horizontal vibration. Applied Mathematical Modelling, 75, 101–115 (2019)

    Article  MathSciNet  Google Scholar 

  14. KIELCZYŃSKI, P. Sensitivity of Love surface waves to mass loading. Sensors and Actuators A: Physical, 338, 113465 (2022)

    Article  Google Scholar 

  15. YANG, W. J., LIANG, X., and SHEN, S. P. Love waves in layered flexoelectric structures. Philosophical Magazine, 97(33), 3186–3209 (2017)

    Article  Google Scholar 

  16. ZHANG, S. J., GU, B., ZHANG, H. B., PAN, R. Y., ALAMUSI, and FENG, X. Q. Frequency dispersion of Love waves in a piezoelectric nanofilm bonded on a semi-infinite elastic substrate. Chinese Journal of Mechanical Engineering, 28(6), 1157–1162 (2015)

    Article  Google Scholar 

  17. ZHU, A. Y. and FAN, T. Y. Dynamic crack propagation in decagonal Al-Ni-Co quasicrystal. Journal of Physics: Condensed Matter, 20(29), 295217 (2008)

    Google Scholar 

  18. LI, X. F. Elastohydrodynamic problems in quasicrystal elasticity theory and wave propagation. Philosophical Magazine, 93(13), 1500–1519 (2013)

    Article  Google Scholar 

  19. ZHANG, B., YU, J. G., and ZHANG, X. M. Guided wave propagation in functionally graded one-dimensional hexagonal quasi-crystal plates. Journal of Mechanics, 36(6), 773–788 (2020)

    Article  Google Scholar 

  20. ZHANG, B., YU, J. G., ZHANG, X. M., and ELMAIMOUNI, L. Guided wave propagating in a 1-D hexagonal piezoelectric quasi-crystal plate. Acta Mechanica, 232, 135–151 (2021)

    Article  MathSciNet  Google Scholar 

  21. FENG, X., ZHANG, L. L., LI, Y., and GAO, Y. On the propagation of plane waves in cubic quasicrystal plates with surface effects. Physics Letters A, 473, 128807 (2023)

    Article  MathSciNet  Google Scholar 

  22. YANG, Y. and LI, X. F. Bending and free vibration of a circular magnetoelectroelastic plate with surface effects. International Journal of Mechanical Sciences, 157, 858–871 (2019)

    Article  Google Scholar 

  23. ZHOU, S. S., ZHANG, R. M., ZHOU, S. J., and LI, A. Q. Free vibration analysis of bilayered circular micro-plate including surface effects. Applied Mathematical Modelling, 70, 54–66 (2019)

    Article  MathSciNet  Google Scholar 

  24. SHAAT, M., MAHMOUD, F. F., GAO, X. L., and FAHEEM, A. F. Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. International Journal of Mechanical Sciences, 79, 31–37 (2014)

    Article  Google Scholar 

  25. DAI, S. X. and PARK, H. S. Surface effects on the piezoelectricity of ZnO nanowires. Journal of the Mechanics and Physics of Solids, 61(2), 385–397 (2013)

    Article  Google Scholar 

  26. STAN, G., CIOBANU, C. V., PARTHANGAL, P. M., and COOK, R. F. Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Letters, 7, 3691–3697 (2007)

    Article  Google Scholar 

  27. ZHANG, L., GUO, J. H., and XING, Y. M. Bending deformation of multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates with nonlocal effect. International Journal of Solids and Structures, 132, 278–302 (2018)

    Article  Google Scholar 

  28. LI, Y., YANG, L. Z., ZHANG, L. L., and GAO, Y. Size-dependent effect on functionally graded multilayered two-dimensional quasicrystal nanoplates under patch/uniform loading. Acta Mechanica, 229(8), 3501–3515 (2018)

    Article  MathSciNet  Google Scholar 

  29. LI, Y., YANG, L. Z., GAO, Y., and PAN, E. Cylindrical bending analysis of a layered two-dimensional piezoelectric quasicrystal nanoplate. Journal of Intelligent Material Systems and Structures, 29(12), 2660–2676 (2018)

    Article  Google Scholar 

  30. LI, Y. S. and XIAO, T. Free vibration of the one-dimensional piezoelectric quasicrystal microbeams based on modified couple stress theory. Applied Mathematical Modelling, 96, 733–750 (2021)

    Article  MathSciNet  Google Scholar 

  31. GUO, J. H., CHEN, J. Y., and PAN, E. Free vibration of three-dimensional anisotropic layered composite nanoplates based on modified couple-stress theory. Physica E: Low-dimensional Systems and Nanostructures, 87, 98–106 (2017)

    Article  Google Scholar 

  32. LUBENSKY, T. C., RAMASWAMY, S., and TONER, J. Hydrodynamics of icosahedral quasicrystals. Physical Review B, 32(11), 7444 (1985)

    Article  Google Scholar 

  33. SOCOLAR, J. E., LUBENSKY, T., and STEINHARDT, P. J. Phonons, phasons, and dislocations in quasicrystals. Physical Review B, 34(5), 3345 (1986)

    Article  Google Scholar 

  34. BAK, P. Phenomenological theory of icosahedral incommensurate (quasiperiodic) order in Mn-Al alloys. Physical Review Letters, 54(14), 1517–1519 (1985)

    Article  Google Scholar 

  35. FAN, T. Y. Mathematical Theory of Elasticity of Quasicrystals and Its Applications, Springer, Heidelberg (2011)

    Book  Google Scholar 

  36. LI, X. Y., WANG, T., ZHENG, R. F., and KANG, G. Z. Fundamental thermo-electro-elastic solutions for 1D hexagonal QC. Zeitschrift für Angewandte Mathematik und Mechanik, 95(5), 457–468 (2015)

    Article  MathSciNet  Google Scholar 

  37. ZHANG, L. L., LIU, J. X., FANG, X. Q., and NIE, G. Q. Size-dependent dispersion characteristics in piezoelectric nanoplates with surface effects. Physica E: Low-dimensional Systems and Nanostructures, 57, 169–174 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Gao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 12272402 and 11972365) and the China Agricultural University Education Foundation (No. 1101-2412001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Ke, L. & Gao, Y. Love wave propagation in one-dimensional piezoelectric quasicrystal multilayered nanoplates with surface effects. Appl. Math. Mech.-Engl. Ed. 45, 619–632 (2024). https://doi.org/10.1007/s10483-024-3104-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-024-3104-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation