Skip to main content
Log in

Lattice Boltzmann simulation of the effects of cavity structures and heater thermal conductivity on nucleate boiling heat transfer

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The boiling heat transfer technology with cavity surfaces can provide higher heat flux under lower wall superheat, which is of great significance for the cooling of electronic chips and microelectromechanical devices. In this paper, the boiling characteristics of the cavity surfaces are investigated based on the lattice Boltzmann (LB) method, focusing on the effects of cavity shapes, sizes, and heater thermal conductivity on the heat transfer performance. The results show that the triangular cavity has the best boiling performance since it has less residual vapor and higher bubble departure frequency than those of the trapezoidal and rectangular cavities. As the cavity size increases, the enhancement of heat transfer by the cavity mouth is suppressed by the heat accumulation effect at the heater bottom. The liquid rewetting process during bubble departure is the reason for the fluctuation of the space-averaged heat flux, and the heater thermal conductivity determines the fluctuation amplitude. The evaporation of liquid in the cavity with high thermal conductivity walls is more intense, resulting in shorter waiting time and higher bubble departure frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TANG, H., TANG, Y., WAN, Z., LI, J., YUAN, W., LU, L., LI, Y., and TANG, K. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling. Applied Energy, 223, 383–400 (2018)

    Article  Google Scholar 

  2. FAN, S. and DUAN, F. A review of two-phase submerged boiling in thermal management of electronic cooling. International Journal of Heat and Mass Transfer, 150, 119324 (2020)

    Article  Google Scholar 

  3. MURSHED, S. M. S. and DE CASTRO, C. A. N. A critical review of traditional and emerging techniques and fluids for electronics cooling. Renewable and Sustainable Energy Reviews, 78, 821–833 (2017)

    Article  Google Scholar 

  4. TAKATA, Y., HIDAKA, S., and URAGUCHI, T. Boiling feature on a super water-repellent surface. Heat Transfer Engineering, 27(8), 25–30 (2006)

    Article  Google Scholar 

  5. BETZ, A. R., XU, J., QIU, H., and ATTINGER, D. Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling? Applied Physics Letters, 97(14), 141909 (2010)

    Article  Google Scholar 

  6. RAHMAN, M. M., POLLACK, J., and MCCARTHY, M. Increasing boiling heat transfer using low conductivity materials. Scientific Reports, 5(1), 1–11 (2015)

    Article  Google Scholar 

  7. DENG, Z., LIU, X., WU, S., and ZHANG, C. Pool boiling heat transfer enhancement by biconductive surfaces. International Journal of Thermal Sciences, 167, 107041 (2021)

    Article  Google Scholar 

  8. PATIL, C. M. and KANDLIKAR, S. G. Review of the manufacturing techniques for porous surfaces used in enhanced pool boiling. Heat Transfer Engineering, 35(10), 887–902 (2014)

    Article  Google Scholar 

  9. EL-GENK, M. S. and ALI, A. F. Enhanced nucleate boiling on copper micro-porous surfaces. International Journal of Multiphase Flow, 36(10), 780–792 (2010)

    Article  Google Scholar 

  10. HUTTER, C., KENNING, D. B. R., SEFIANE, K., KARAYIANNIS, T. G., LIN, H., CUMMINS, G., and WALTON, A. J. Experimental pool boiling investigations of FC-72 on silicon with artificial cavities and integrated temperature microsensors. Experimental Thermal and Fluid Science, 34(4), 422–433 (2010)

    Article  Google Scholar 

  11. MA, X. and CHENG, P. Dry spot dynamics and wet area fractions in pool boiling on micro-pillar and micro-cavity hydrophilic heaters: a 3D lattice Boltzmann phase-change study. International Journal of Heat and Mass Transfer, 141, 407–418 (2019)

    Article  Google Scholar 

  12. CAO, H., ZUO, Q., AN, Q., ZHANG, Z., LIU, H., and ZHANG, D. Lattice Boltzmann method for simulation of solid-liquid conjugate boiling heat transfer surface with mixed wettability structures. Physics of Fluids, 34(5), 053305 (2022)

    Article  Google Scholar 

  13. LEE, W., SON, G., and JEONG, J. J. Numerical analysis of bubble growth and departure from amicrocavity. Numerical Heat Transfer, Part B: Fundamentals, 58(5), 323–342 (2010)

    Article  Google Scholar 

  14. PRECKSHOT, G. W. and DENNY, V. E. Explorations of surface and cavity properties on the nucleate boiling of carbon tetrachloride. The Canadian Journal of Chemical Engineering, 45(4), 241–246 (1967)

    Article  Google Scholar 

  15. SHOJI, M. and TAKAGI, Y. Bubbling features from a single artificial cavity. International Journal of Heat and Mass Transfer, 44(14), 2763–2776 (2001)

    Article  MATH  Google Scholar 

  16. DONG, L., QUAN, X., and CHENG, P. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures. International Journal of Heat and Mass Transfer, 71, 189–196 (2014)

    Article  Google Scholar 

  17. CHANG, X., HUANG, H., CHENG, Y. P., and LU, X. Y. Lattice Boltzmann study of pool boiling heat transfer enhancement on structured surfaces. International Journal of Heat and Mass Transfer, 139, 588–599 (2019)

    Article  Google Scholar 

  18. GONG, S., CHENG, P., and QUAN, X. Two-dimensional mesoscale simulations of saturated pool boiling from rough surfaces, part I: bubble nucleation in a single cavity at low superheats. International Journal of Heat and Mass Transfer, 100, 927–937 (2016)

    Article  Google Scholar 

  19. FANG, W. Z., CHEN, L., KANG, Q. J., and TAO, W. Q. Lattice Boltzmann modeling of pool boiling with large liquid-gas density ratio. International Journal of Thermal Sciences, 114, 172–183 (2017)

    Article  Google Scholar 

  20. YU, C. K., LU, D. C., and CHENG, T. C. Pool boiling heat transfer on artificial micro-cavity surfaces in dielectric fluid FC-72. Journal of Micromechanics and Microengineering, 16(10), 2092 (2006)

    Article  Google Scholar 

  21. HONDA, H. and WEI, J. J. Enhanced boiling heat transfer from electronic components by use of surface microstructures. Experimental Thermal and Fluid Science, 28(2–3), 159–169 (2004)

    Article  Google Scholar 

  22. MA, X. and CHENG, P. Dry spot dynamics and wet area fractions in pool boiling on micro-pillar and micro-cavity hydrophilic heaters: a 3D lattice Boltzmann phase-change study. International Journal of Heat and Mass Transfer, 141, 407–418 (2019)

    Article  Google Scholar 

  23. YU, Y., LI, Q., QIU, Y., and HUANG, R. Z. Bubble dynamics and dry spot formation during boiling on a hierarchical structured surface: a lattice Boltzmann study. Physics of Fluids, 33(8), 083306 (2021)

    Article  Google Scholar 

  24. LI, Q., KANG, Q. J., FRANCOIS, M. M., HE, Y. L., and LUO, K. H. Lattice Boltzmann modeling of boiling heat transfer: the boiling curve and the effects of wettability. International Journal of Heat and Mass Transfer, 85, 787–796 (2015)

    Article  Google Scholar 

  25. YU, Y., WEN, Z. X., LI, Q., ZHOU, P., and YAN, H. J. Boiling heat transfer on hydrophilic-hydrophobic mixed surfaces: a 3D lattice Boltzmann study. Applied Thermal Engineering, 142, 846–854 (2018)

    Article  Google Scholar 

  26. DOU, S., HAO, L., and LIU, H. Numerical study of bubble behaviors and heat transfer in pool boiling of water/NaCl solutions using the lattice Boltzmann method. International Journal of Thermal Sciences, 170, 107158 (2021)

    Article  Google Scholar 

  27. FENG, Y., LI, H., GUO, K., LEI, X., and ZHAO, J. Numerical study on saturated pool boiling heat transfer in presence of a uniform electric field using lattice Boltzmann method. International Journal of Heat and Mass Transfer, 135, 885–896 (2019)

    Article  Google Scholar 

  28. NIE, D. and GUAN, G. Study on boiling heat transfer in a shear flow through the lattice Boltzmann method. Physics of Fluids, 33(4), 043314 (2021)

    Article  Google Scholar 

  29. LI, L., CHEN, C., MEI, R., and KLAUSNER, J. F. Conjugate heat and mass transfer in the lattice Boltzmann equation method. Physical Review E, 89(4), 043308 (2014)

    Article  Google Scholar 

  30. LI, Q., LUO, K. H., and LI, X. J. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model. Physical Review E, 87(5), 053301 (2013)

    Article  Google Scholar 

  31. FENG, Y., CHANG, F., HU, Z., and ZHAO, J. Investigation of pool boiling heat transfer on hydrophilic-hydrophobic mixed surface with micro-pillars using LBM. International Journal of Thermal Sciences, 163, 106814 (2021)

    Article  Google Scholar 

  32. LEE, T. and LIN, C. L. A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. Journal of Computational Physics, 206(1), 16–47 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. HU, A. and LIU, D. 2D Simulation of boiling heat transfer on the wall with an improved hybrid lattice Boltzmann model. Applied Thermal Engineering, 159, 113788 (2019)

    Article  Google Scholar 

  34. ZHAO, W., LIANG, J., SUN, M., and WANG, Z. Investigation on the effect of convective outflow boundary condition on the bubbles growth, rising and breakup dynamics of nucleate boiling. International Journal of Thermal Sciences, 167, 106877 (2021)

    Article  Google Scholar 

  35. GONG, S. and CHENG, P. Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling. International Journal of Heat and Mass Transfer, 64, 122–132 (2013)

    Article  Google Scholar 

  36. LI, Z. D., ZHANG, L., ZHAO, J. F., LI, H. X., LI, K., and WU, K. Numerical simulation of bubble dynamics and heat transfer with transient thermal response of solid wall during pool boiling of FC-72. International Journal of Heat and Mass Transfer, 84, 409–418 (2015)

    Article  Google Scholar 

  37. MU, Y. T., CHEN, L., HE, Y. L., KANG, Q. J., and TAO, W. Q. Nucleate boiling performance evaluation of cavities at mesoscale level. International Journal of Heat and Mass Transfer, 106, 708–719 (2017)

    Article  Google Scholar 

  38. QUAN, X., CHEN, G., and CHENG, P. A thermodynamic analysis for heterogeneous boiling nucleation on a superheated wall. International Journal of Heat and Mass Transfer, 54(21–22), 4762–4769 (2011)

    Article  MATH  Google Scholar 

  39. DHIR, V. K. Mechanistic prediction of nucleate boiling heat transfer-achievable or a hopeless task? Journal of Heat Transfer, 128(1), 1–12 (2006)

    Article  Google Scholar 

  40. LI, Q., ZHOU, P., and YAN, H. J. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change. Physical Review E, 96(6), 063303 (2017)

    Article  MathSciNet  Google Scholar 

  41. MOGHADDAM, S. and KIGER, K. Physical mechanisms of heat transfer during single bubble nucleate boiling of FC-72 under saturation conditions-I, experimental investigation. International Journal of Heat and Mass Transfer, 52(5–6), 1284–1294 (2009)

    Article  MATH  Google Scholar 

  42. MANN, M., STEPHAN, K., and STEPHAN, P. Influence of heat conduction in the wall on nucleate boiling heat transfer. International Journal of Heat and Mass Transfer, 43(12), 2193–2203 (2000)

    Article  MATH  Google Scholar 

  43. ZHOU, P., LIU, W., and LIU, Z. Lattice Boltzmann simulation of nucleate boiling in micro-pillar structured surface. International Journal of Heat and Mass Transfer, 131, 1–10 (2019)

    Article  Google Scholar 

  44. ZHOU, J., ZHANG, Y., and WEI, J. A modified bubble dynamics model for predicting bubble departure diameter on micro-pin-finned surfaces under microgravity. Applied Thermal Engineering, 132, 450–462 (2018)

    Article  Google Scholar 

  45. AKTINOL, E. and DHIR, V. K. Numerical simulation of nucleate boiling phenomenon coupled with thermal response of the solid. Microgravity Science and Technology, 24(4), 255–265 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaomiao Liu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11872083, 12172017, and 12202021)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, F., Liu, Z., Zheng, N. et al. Lattice Boltzmann simulation of the effects of cavity structures and heater thermal conductivity on nucleate boiling heat transfer. Appl. Math. Mech.-Engl. Ed. 44, 981–996 (2023). https://doi.org/10.1007/s10483-023-2982-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-2982-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation