Skip to main content
Log in

Electromagnetohydrodynamic flows and mass transport in curved rectangular microchannels

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Curved microchannels are often encountered in lab-on-chip systems because the effective axial channel lengths of such channels are often larger than those of straight microchannels for a given per unit chip length. In this paper, the effective diffusivity of a neutral solute in an oscillating electromagnetohydrodynamic (EMHD) flow through a curved rectangular microchannel is investigated theoretically. The flow is assumed as a creeping flow due to the extremely low Reynolds number in such microflow systems. Through the theoretical analysis, we find that the effective diffusivity primarily depends on five dimensionless parameters, i.e., the curvature ratio of the curved channel, the Schmidt number, the tidal displacement, the angular Reynolds number, and the dimensionless electric field strength parameter. Based on the obtained results, we can precisely control the mass transfer characteristics of the EMHD flow in a curved rectangular microchannel by appropriately altering the corresponding parameter values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. STONE, H. A., STROOCK, A. D., and AJDARI, A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics, 36(36), 381–411 (2004)

    MATH  Google Scholar 

  2. SARKAR, S. and GANGULY, S. Characterization of electromagnetohydrodynamic transport of power law fluids in microchannel. Journal of Non-Newtonian Fluid Mechanics, 250, 18–30 (2017)

    MathSciNet  Google Scholar 

  3. KLEINSTREUER, C., JIE, L., and JUNEMO, K. Microfluidics of nano-drug delivery. International Journal of Heat and Mass Transfer, 51(23), 5590–5597 (2008)

    MATH  Google Scholar 

  4. KHAN, I. U., SERRA, C. A., ANTON, N., and VANDAMMEA, T. Microfluidics: a focus on improved cancer targeted drug delivery systems. Journal of Controlled Release, 172(3), 1065–1074 (2013)

    Google Scholar 

  5. MANSOURI, A., BHATTACHARJEE, S., and KOSTIUK, L. High-power electro kinetic energy conversion in a glass microchannel array. Lab on a Chip, 12(20), 4033–4036 (2012)

    Google Scholar 

  6. LIU, Y. Z., KIM, B. J., and SUNG, H. J. Two-fluid mixing in a microchannel. International Journal of Heat and Fluid Flow, 25(6), 986–995 (2004)

    Google Scholar 

  7. WEILIN, Q., MALA, G. M., and LI, D. Q. Pressure-driven water flows in trapezoidal silicon microchannels. International Journal of Heat and Mass Transfer, 43(3), 353–364 (2000)

    MATH  Google Scholar 

  8. CHANDA, S., SINHA, S., and DAS, S. Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter, 10(38), 7558–7568 (2014)

    Google Scholar 

  9. DAS, S. and CHAKRABORTY, S. Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Analytica Chimica Acta, 559(1), 15–24 (2006)

    Google Scholar 

  10. TSAO, H. K. Electroosmotic flow through an annulus. Journal of Colloid and Interface Science, 225(1), 247–250 (2000)

    Google Scholar 

  11. TAN, Z., QI, H. T., and JIANG, X. Y. Electroosmotic flow of Eyring fluid in slit microchannel with slip boundary condition. Applied Mathematics and Mechanics (English Edition), 35(6), 689–696 (2014) https://doi.org/10.1007/s10483-014-1822-6

    MathSciNet  MATH  Google Scholar 

  12. WANG, C. Y., LIU, Y. H., and CHANG, C. C. Analytical solution of electro-osmotic flow in a semicircular microchannel. Physics of Fluids, 20(6), 063105 (2008)

    MATH  Google Scholar 

  13. DING, Z. D., JIAN, Y. J., and YANG, L. G. Time periodic electroosmotic flow of micropolar fluids through microparallel channel. Applied Mathematics and Mechanics (English Edition), 37(6), 769–786 (2016) https://doi.org/10.1007/s10483-016-2081-6

    MathSciNet  MATH  Google Scholar 

  14. WANG, X., CHEN, B., and WU, J. A semianalytical solution of periodical electro-osmosis in a rectangular microchannel. Physics of Fluids, 19(12), 127101 (2007)

    MATH  Google Scholar 

  15. QI, C. and NG, C. O. Rotating electroosmotic flow of viscoplastic material between two parallel plates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 513, 355–366 (2017)

    Google Scholar 

  16. QI, C. and NG, C. O. Electroosmotic flow of a power-law fluid in a slit microchannel with gradually varying channel height and wall potential. European Journal of Mechanics-B/Fluids, 52, 160–168 (2015)

    MathSciNet  MATH  Google Scholar 

  17. LEMOFF, A. V. and LEE, A. P. An AC magnetohydrodynamic micropump. Sensors and Actuators B: Chemical, 63(3), 178–185 (2000)

    Google Scholar 

  18. SHEIKHOLESLAMI, M. and BHATTI, M. M. Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. International Journal of Heat and Mass Transfer, 111, 1039–1049 (2017)

    Google Scholar 

  19. DANIEL, Y. S., AZIZ, Z. A., ISMAIL, Z., and SALAH, F. Slip effects on electrical unsteady MHD natural convection flow of nanofluid over a permeable shrinking sheet with thermal radiation. Engineering Letters, 26(1), 107–116 (2018)

    Google Scholar 

  20. JANG, J. and LEE, S. S. Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sensors and Actuators A: Physical, 80(1), 84–89 (2000)

    Google Scholar 

  21. CHAKRABORTY, S. and PAUL, D. Microchannel flow control through a combined electromagnetohydrodynamic transport. Journal of Physics D: Applied Physics, 39(24), 5364–5371 (2006)

    Google Scholar 

  22. DAS, S., MITRA, S. K., and CHAKRABORTY, S. Ring stains in the presence of electromagnetohydrodynamic interactions. Physical Review E, 86(5), 056317 (2012)

    Google Scholar 

  23. ESCANDON, J., SANTIAGO, F., BAUTISTA, O., and MENDEZ, F. Hydrodynamics and thermal analysis of a mixed electromagnetohydrodynamic-pressure driven flow for Phan-Thien-Tanner fluids in a microchannel. International Journal of Thermal Sciences, 86, 246–257 (2014)

    Google Scholar 

  24. WEIGL, B. H., BARDELL, R. L., and CABRERA, C. R. Lab-on-a-chip for drug development. Advanced Drug Delivery Reviews, 55(3), 349–377 (2003)

    Google Scholar 

  25. ARIS, R. On the dispersion of a solute in pulsating flow through a tube. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 259(1298), 370–376 (1960)

    MathSciNet  MATH  Google Scholar 

  26. WATSON, E. J. Diffusion in oscillatory pipe flow. Journal of Fluid Mechanics, 133, 233–244 (1983)

    MathSciNet  MATH  Google Scholar 

  27. JOSHI, C. H., KAMM, R. D., DRAZEN, J. M., and SLUTSKY, A. S. An experimental study of gas exchange in laminar oscillatory flow. Journal of Fluid Mechanics, 133, 245–254 (2006)

    Google Scholar 

  28. JAEGER, M. J. and KURZWEG, U. H. Determination of the longitudinal dispersion coefficient in flows subjected to high-frequency oscillations. Physics of Fluids, 26(6), 1380–1382 (1983)

    Google Scholar 

  29. MANOPOULOS, C. and TSANGARIS, S. Enhanced diffusion for oscillatory viscoelastic flow. Physica Scripta, 89(8), 085206 (2014)

    Google Scholar 

  30. ZHOU, Q. and NG, C. O. Electro-osmotic dispersion in a circular tube with slip-stick striped wall. Fluid Dynamics Research, 47(1), 015502 (2014)

    MathSciNet  Google Scholar 

  31. NG, C. O. and CHEN, B. Dispersion in electro-osmotic flow through a slit channel with axial step changes of zeta potential. Journal of Fluids Engineering, 135(10), 101203 (2013)

    Google Scholar 

  32. NG, C. O. and ZHOU, Q. Dispersion due to electroosmotic flow in a circular microchannel with slowly varying wall potential and hydrodynamic slippage. Physics of Fluids, 24(11), 112002 (2012)

    Google Scholar 

  33. JIE, S., NG, C. O., and ADRIAN, W. K. Dispersion in oscillatory electro-osmotic flow through a parallel-plate channel with kinetic sportive exchange at walls. Journal of Hydrodynamics, 26(3), 363–373 (2014)

    Google Scholar 

  34. ARCOS, J. C., MÉNDEZ, F., BAUTISTA, E. G., and BAUTISTA, O. Dispersion coefficient in an electro-osmotic flow of a viscoelastic fluid through a microchannel with a slowly varying wall zeta potential. Journal of Fluid Mechanics, 839, 348–386 (2018)

    MathSciNet  MATH  Google Scholar 

  35. HUANG, H. F. and LAI, C. L. Enhancement of mass transport and separation of species by oscillatory electroosmotic flows. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462(2071), 2017–2038 (2006)

    MathSciNet  MATH  Google Scholar 

  36. RAMON, G., AGNON, Y., and DOSORETZ, C. Solute dispersion in oscillating electro-osmotic flow with boundary mass exchange. Microfluidics and Nanofluidics, 10(1), 97–106 (2011)

    Google Scholar 

  37. RAMON, G. Z. Solute transport under oscillating electro-osmotic flow in a closed-ended cylindrical pore. Journal of Engineering Mathematics, 110(1), 195–205 (2018)

    MathSciNet  MATH  Google Scholar 

  38. LI, H. C. and JIAN, Y. J. Dispersion for periodic electro-osmotic flow of Maxwell fluid through a microtube. International Journal of Heat Mass Transfer, 115, 703–713 (2017)

    Google Scholar 

  39. MEDINA, I., TOLEDO, M., MÉNDEZ, F., and BAUTISTA, O. Pulsatile electroosmotic flow in a microchannel with asymmetric wall zeta potentials and its effect on mass transport enhancement and mixing. Chemical Engineering Science, 184, 259–272 (2018)

    Google Scholar 

  40. MUÑOZ, J., ARCOS, J., BAUTISTA, O., and MÉNDEZ, F. Slippage effect on the dispersion coefficient of a passive solute in a pulsatile electro-osmotic flow in a microcapillary. Physical Review Fluids, 3, 084503 (2018)

    Google Scholar 

  41. TEODORO, C., BAUTISTA, O., and MÉNDEZ, F. Mass transport and separation of species in an oscillating electro-osmotic flow caused by distinct periodic electric fields. Physica Scripta, 94(11), 115012 (2019)

    Google Scholar 

  42. PERALTA, M., ARCOS, J., MÉNDEZ, F., and BAUTISTA, O. Mass transfer through a concentric-annulus microchannel driven by an oscillatory electroosmotic flow of a Maxwell fluid. Journal of Non-Newtonian Fluid Mechanics, 279, 104281 (2020)

    MathSciNet  Google Scholar 

  43. ZHAO, J., ZHENG, L., ZHANG, X., and LIU, F. Convection heat and mass transfer of fractional MHD Maxwell fluid in a porous medium with Soret and Dufour effects. International Journal of Heat Mass Transfer, 103, 203–210 (2016)

    Google Scholar 

  44. SRINIVAS, S. and KOTHANDAPANI, M. The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls. Applied Mathematics and Computation, 213(1), 197–208 (2009)

    MathSciNet  MATH  Google Scholar 

  45. VARGAS, C., BAUTISTA, O., ARCOS, J., and MENDEZ, F. Hydrodynamic dispersion in a combined magnetohydrodynamic-electroosmotic-driven flow through a microchannel with slowly varying wall zeta potentials. Physics of Fluids, 29(9), 0922002 (2017)

    Google Scholar 

  46. ORTIZ-PEREZ, A. S., GARCIA-ANGEL, V., ACUNA-RAMIREZ, A., VARGAS-OSUNA, L., PEREZ-BARRERA, E. J., and CUEVAS, S. Magnetohydrodynamic flow with slippage in an annular duct for microfluidic applications. Microfluidics and Nanofluidics, 21(8), 138 (2017)

    Google Scholar 

  47. VALENZUELA-DELGADO, M., FLORES-FUENTES, W., RIVAS-LOPEZ, M., SERGIYENKO, O., LINDNER, L., HERNANDEZ-BALBUENA, D., and RODRIGUEZ-QUINONEZ, J. C. Electrolyte magnetohydrodynamic flow sensing in an open annular channel — a vision system for validation of the mathematical model. Sensors, 18(6), 1683 (2018)

    Google Scholar 

  48. NOROUZI, M., VAMERZANI, B. Z., DAVOODI, M., BIGLARI, N., and SHAHMARDAN, M. M. An exact analytical solution for creeping Dean flow of Bingham plastics through curved rectangular ducts. Rheologica Acta, 54(5), 391–402 (2015)

    Google Scholar 

  49. DEHARO, M. L., DELRIO, J. A., and WHITAKER, S. Flow of Maxwell fluids in porous media. Transport in Porous Media, 25(2), 167–192 (1996)

    Google Scholar 

  50. SAUER. T. Numerical Analysis, 2nd ed., Pearson Education Inc., New York, 399–401 (2012)

    Google Scholar 

  51. BANDOPADHYAY, A. and CHAKRABORTY, S. Giant augmentations in electro-hydro-dynamic energy conversion efficiencies of nanofluidic devices using viscoelastic fluids. Applied Physics Letters, 101(4), 043905 (2012)

    Google Scholar 

  52. LIU, Y. P., JIAN, Y. J., LIU, Q. S., and LI, F. Q. Alternating current magnetohydrodynamic electroosmotic flow of Maxwell fluids between two micro-parallel plates. Journal of Molecular Liquids, 211, 784–791 (2015)

    Google Scholar 

  53. RIVERO, M. and CUEVAS, S. Analysis of the slip condition in magnetohydrodynamic (MHD) micropumps. Sensors and Actuators B: Chemical, 166, 884–892 (2012)

    Google Scholar 

  54. ZHAO, G. P., JIAN, Y. J., CHANG, L., and BUREN, M. D. L. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field. Journal of Magnetism and Magnetic Materials, 387, 111–117 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Jian.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11772162) and the Natural Science Foundation of Inner Mongolia Autonomous Region of China (No. 2016MS0106)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jian, Y. Electromagnetohydrodynamic flows and mass transport in curved rectangular microchannels. Appl. Math. Mech.-Engl. Ed. 41, 1431–1446 (2020). https://doi.org/10.1007/s10483-020-2649-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2649-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation