Skip to main content
Log in

A numerical investigation of CO2 dilution on the thermochemical characteristics of a swirl stabilized diffusion flame

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The turbulent combustion flow modeling is performed to study the effects of CO2 addition to the fuel and oxidizer streams on the thermochemical characteristics of a swirl stabilized diffusion flame. A flamelet approach along with three well-known turbulence models is utilized to model the turbulent combustion flow field. The k-ω shear stress transport (SST) model shows the best agreement with the experimental measurements compared with other models. Therefore, the k-ω SST model is used to study the effects of CO2 dilution on the flame structure and strength, temperature distribution, and CO concentration. To determine the chemical effects of CO2 dilution, a fictitious species is replaced with the regular CO2 in both the fuel stream and the oxidizer stream. The results indicate that the flame temperature decreases when CO2 is added to either the fuel or the oxidizer stream. The flame length reduction is observed at all levels of CO2 dilution. The H radical concentration indicating the flame strength decreases, following by the thermochemical effects of CO2 dilution processes. In comparison with the fictitious species dilution, the chemical effects of CO2 addition enhance the CO mass fraction. The numerical simulations show that when the dilution level is higher, the rate of the flame length reduction is more significant at low swirl numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WALL, T. F. Combustion processes for carbon capture. Proceedings of the Combustion Institute, 31(1), 31–47 (2007)

    Article  Google Scholar 

  2. CAVALIERE, A. and DE JOANNON, M. Mild combustion. Progress in Energy and Combustion Science, 30(4), 329–366 (2004)

    Article  Google Scholar 

  3. KIM, D. S. and LEE, C. S. Improved emission characteristics of HCCI engine by various premixed fuels and cooled EGR. Fuel, 85(5), 695–704 (2006)

    Article  Google Scholar 

  4. LIU, F., GUO, H., SMALLWOOD, G. J., and GULDER, O. L. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: implications for soot and NOx formation. Combustion and Flame, 125(1), 778–787 (2001)

    Article  Google Scholar 

  5. ERETE, J. I., HUGHES, K. J., MA, L., FAIRWEATHER, M., POURKASHANIAN, M., and WILLIAMS, A. Effect of CO2 dilution on the structure and emissions from turbulent non-premixed methane-air jet flames. Journal of the Energy Institute, 90(2), 191–200 (2017)

    Article  Google Scholar 

  6. PARK, J., HWANG, D. J., CHOI, J. G., LEE, K. M., KEEL, S. I., and SHIM, S. H. Chemical effects of CO2 addition to oxidizer and fuel streams on flame structure in H2-O2 counterflow diffusion flames. International Journal of Energy Research, 27(13), 1205–1220 (2003)

    Article  Google Scholar 

  7. MAMERI, A., TABET, F., and HADEF, A. Numerical investigation of biogas diffusion flames characteristics under several operation conditions in counter-flow configuration with an emphasis on thermal and chemical effects of CO2 in the fuel mixture. Heat and Mass Transfer, 53(8), 2701–2710 (2017)

    Article  Google Scholar 

  8. CHEN, L. and GHONIEM, A. F. Modeling CO2 chemical effects on CO formation in oxy-fuel diffusion flames using detailed, quasi-global, and global reaction mechanisms. Combustion Science and Technology, 186(7), 829–848 (2014)

    Article  Google Scholar 

  9. GLARBORG, P. and BENTZEN, L. L. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy and Fuels, 22(1), 291–296 (2007)

    Article  Google Scholar 

  10. HOERLLE, C., ZIMMER, L., and PEREIRA, F. Numerical study of CO2 effects on laminar non-premixed biogas flames employing a global kinetic mechanism and the flamelet-generated manifold technique. Fuel, 203, 671–685 (2017)

    Article  Google Scholar 

  11. CAO, S., MA, B., GIASSI, D., BENNETT, B. A. V., LONG, M. B., and SMOOKE, M. D. Effects of pressure and fuel dilution on coflow laminar methane-air diffusion flames: a computational and experimental study. Combustion Theory and Modeling, 22(2), 316–337 (2017)

    Article  MathSciNet  Google Scholar 

  12. WILSON, D. A. and LYONS, K. M. Effects of dilution and co-flow on the stability of lifted non-premixed biogas-like flames. Fuel, 87(3), 405–413 (2008)

    Article  Google Scholar 

  13. CAO, S., MA, B., BENNETT, B., GIASSI, D., STOCKER, D., TAKAHASHI, F., LONG, M., and SMOOKE, M. A computational and experimental study of coflow laminar methane/air diffusion flames: effects of fuel dilution, inlet velocity, and gravity. Proceedings of the Combustion Institute, 35(1), 897–903 (2015)

    Article  Google Scholar 

  14. WATANABE, H., SHANBHOGUE, S. J., TAAMALLAH, S., CHAKROUN, N. W., and GHONIEM, A. F. The structure of swirl-stabilized turbulent premixed CH4/air and CH4/O2/CO2 flames and mechanisms of intense burning of oxy-flames. Combustion and Flame, 174, 111–119 (2016)

    Article  Google Scholar 

  15. GASCOIN, N., YANG, Q., and CHETEHOUNA, K. Thermal effects of CO2 on the NOx formation behavior in the CH4 diffusion combustion system. Applied Thermal Engineering, 110, 144–149 (2017)

    Article  Google Scholar 

  16. GU, M., CHU, H., and LIU, F. Effects of simultaneous hydrogen enrichment and carbon dioxide dilution of fuel on soot formation in an axisymmetric coflow laminar ethylene/air diffusion flame. Combustion and Flame, 166, 216–228 (2016)

    Article  Google Scholar 

  17. PARK, J., KIM, S. G., LEE, K. M., and KIM, T. K. Chemical effect of diluents on flame structure and NO emission characteristic in methane-air counterflow diffusion flame. International Journal of Energy Research, 26(13), 1141–1160 (2002)

    Article  Google Scholar 

  18. ZHUO, L., JIANG, Y., QIU, R., AN, J., and XU, W. Effects of fuel-side N2, CO2, H2O dilution on combustion characteristics and NOx formation of syngas turbulent nonpremixed jet flames. Journal of Engineering for Gas Turbines and Power, 136(6), 061505 (2014)

    Article  Google Scholar 

  19. WANG, L., LIU, Z., CHEN, S., ZHENG, C., and LI, J. Physical and chemical effects of CO2 and H2O additives on counterflow diffusion flame burning methane. Energy and Fuels, 27(12), 7602–7611 (2013)

    Article  Google Scholar 

  20. MIN, J., BAILLOT, F., GUO, H., DOMINGUES, E., TALBAUT, M., and PATTE-ROULAND, B. Impact of CO2, N2 or Ar diluted in air on the length and lifting behavior of a laminar diffusion flame. Proceedings of the Combustion Institute, 33(1), 1071–1078 (2011)

    Article  Google Scholar 

  21. XU, H., LIU, F., SUN, S., ZHAO, Y., MENG, S., and TANG, W. Effects of H2O and CO2 diluted oxidizer on the structure and shape of laminar coflow syngas diffusion flames. Combustion and Flame, 177, 67–78 (2017)

    Article  Google Scholar 

  22. SYRED, N. and BEER, J. Combustion in swirling flows: a review. Combustion and Flame, 23(2), 143–201 (1974)

    Article  Google Scholar 

  23. CHEN, R. H. and DRISCOLL, J. F. The role of the recirculation vortex in improving fuel-air mixing within swirling flames. International Symposium on Combustion, 22(1), 531–540 (1989)

    Article  Google Scholar 

  24. CHEN, R. H. and DRISCOLL, J. F. Nitric oxide levels of jet diffusion flames: effects of coaxial air and other mixing parameters. International Symposium on Combustion, 23(1), 281–288 (1991)

    Article  Google Scholar 

  25. CLAYPOLE, T. and SYRED, N. The effect of swirl burner aerodynamics on NOx formation. International Symposium on Combustion, 18(1), 81–89 (1981)

    Article  Google Scholar 

  26. DATTA, A. and SOM, S. Combustion and emission characteristics in a gas turbine combustor at different pressure and swirl conditions. Applied Thermal Engineering, 19(9), 949–967 (1999)

    Article  Google Scholar 

  27. DAY, M., TACHIBANA, S., BELL, J., LIJEWSKI, M., BECKNER, V., and CHENG, R. K. A combined computational and experimental characterization of lean premixed turbulent low swirl laboratory flames: I. methane flames. Combustion and Flame, 159(1), 275–290 (2012)

    Article  Google Scholar 

  28. GREGOR, M., SEFFRIN, F., FUEST, F., GEYER, D., and DREIZLER, A. Multi-scalar measurements in a premixed swirl burner using 1D Raman/Rayleigh scattering. Proceedings of the Combustion Institute, 32(2), 1739–1746 (2009)

    Article  Google Scholar 

  29. STOPPER, U., MEIER, W., SADANANDAN, R., STOHR, M., AIGNER, M., and BULAT, G. Experimental study of industrial gas turbine flames including quantification of pressure influence on flow field, fuel/air premixing and flame shape. Combustion and Flame, 160(10), 2103–2118 (2013)

    Article  Google Scholar 

  30. AL-ABDELI, Y. M. and MASRI, A. R. Stability characteristics and flowfields of turbulent non-premixed swirling flames. Combustion Theory and Modelling, 7(4), 731–766 (2003)

    Article  MATH  Google Scholar 

  31. CHENG, T., CHAO, Y. C., WU, D. C., YUAN, T., LU, C. C., CHENG, C. K., and CHANG, J. M. Effects of fuel-air mixing on flame structures and NOx emissions in swirling methane jet flames. International Symposium on Combustion, Elsevier, 27(1), 1229–1237 (1998)

    Article  Google Scholar 

  32. KALT, P. A., AL-ABDELI, Y. M., MASRI, A. R., and BARLOW, R. S. Swirling turbulent non-premixed flames of methane: flow field and compositional structure. Proceedings of the Combustion Institute, 29(2), 1913–1919 (2002)

    Article  Google Scholar 

  33. MASRI, A., KALT, P., AL-ABDELI, Y., and BARLOW, R. Turbulence-chemistry interactions in non-premixed swirling flames. Combustion Theory and Modelling, 11(5), 653–673 (2007)

    Article  MATH  Google Scholar 

  34. MASRI, A. R., KALT, P. A., and BARLOW, R. S. The compositional structure of swirl-stabilised turbulent nonpremixed flames. Combustion and Flame, 137(1–2), 1–37 (2004)

    Article  Google Scholar 

  35. CHENG, T. S., CHAO, Y. C., WU, D. C., HSU, H. W., and YUAN, T. Effects of partial premixing on pollutant emissions in swirling methane jet flames. Combustion and Flame, 125(1–2), 865–878 (2001)

    Article  Google Scholar 

  36. VANOVERBERGHE, K. P., VAN DEN BULCK, E. V., and TUMMERS, M. J. Confined annular swirling jet combustion. Combustion Science and Technology, 175(3), 545–578 (2003)

    Article  Google Scholar 

  37. BEER, J. M. and CHIGIER, N. A. Combustion Aerodynamics, Robert E. Krieger Publishing Company, New York (1972)

  38. JENKINS, B. and MULLINGER, P. Industrial and Process Furnaces: Principles, Design and Operation, Elsevier, Amsterdam (2014)

    Google Scholar 

  39. KEMPF, A., MALALASEKERA, W., RANGA-DINESH, K., and STEIN, O. Large eddy simulations of swirling non-premixed flames with flamelet models: a comparison of numerical methods. Flow, Turbulence and Combustion, 81(4), 523–561 (2008)

    Article  MATH  Google Scholar 

  40. DE MEESTER, R., NAUD, B., MAAS, U., and MERCI, B. Transported scalar PDF calculations of a swirling bluff body flame SM1 with a reaction diffusion manifold. Combustion and Flame, 159(7), 2415–2429 (2012)

    Article  Google Scholar 

  41. KASHIR, B., TABEJAMAAT, S., and JALALATIAN, N. A numerical study on combustion characteristics of blended methane-hydrogen bluff-body stabilized swirl diffusion flames. International Journal of Hydrogen Energy, 40(18), 6243–6258 (2015)

    Article  Google Scholar 

  42. MARDANI, A. and FAZLOLLAHI-GHOMSHI, A. Numerical investigation of a double-swirled gas turbine model combustor using a RANS approach with different turbulence-chemistry interaction models. Energy and Fuels, 30(8), 6764–6776 (2016)

    Article  Google Scholar 

  43. MARDANI, A. and GHOMSHI, A. F. Numerical study of oxy-fuel MILD (moderate or intense low-oxygen dilution combustion) combustion for CH4-H2 fuel. Energy, 99, 136–151 (2016)

    Article  Google Scholar 

  44. ROHANI, B. and SAQR, K. M. Effects of hydrogen addition on the structure and pollutant emissions of a turbulent unconfined swirling flame. International Communications in Heat and Mass Transfer, 39(5), 681–688 (2012)

    Article  Google Scholar 

  45. YANG, X., HE, Z., DONG, S., and TAN, H. Combustion characteristics of bluff-body turbulent swirling flames with coaxial air microjet. Energy and Fuels, 31(12), 14306–14319 (2017)

    Article  Google Scholar 

  46. MULLER, H., FERRARO, F., and PFITZNER, M. Implementation of a steady laminar flamelet model for non-premixed combustion in LES and RANS simulations. 8th International OpenFOAM Workshop, Korea (2013)

  47. GUPTA, A. and KUMAR, R. Three-dimensional turbulent swirling flow in a cylinder: experiments and computations. International Journal of Heat and Fluid Flow, 28(2), 249–261 (2007)

    Article  Google Scholar 

  48. MENTER, F. R., KUNTZ, M., and LANGTRY, R. Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 4(1), 625–632 (2003)

    Google Scholar 

  49. CHEN, L. and GHONIEM, A. F. Simulation of oxy-coal combustion in a 100 kWth test facility using RANS and LES: a validation study. Energy and Fuels, 26(8), 4783–4798 (2012)

    Article  Google Scholar 

  50. FU, J., TANG, Y., LI, J., MA, Y., CHEN, W., and LI, H. Four kinds of the two-equation turbulence model’s research on flow field simulation performance of PDF’s porous media and swirl-type regeneration burner. Applied Thermal Engineering, 93, 397–404 (2016)

    Article  Google Scholar 

  51. SAFAVI, M. and AMANI, E. A comparative study of turbulence models for non-premixed swirl-stabilized flames. Journal of Turbulence, 19(11–12), 1017–1050 (2018)

    Article  MathSciNet  Google Scholar 

  52. POINSOT, T. and VEYNANTE, D. Theoretical and Numerical Combustion, R. T. Edwards, Inc., Booval (2005)

    Google Scholar 

  53. MALALASEKERA, W., RANGA-DINESH, K., IBRAHIM, S. S., and MASRI, A. R. LES of recirculation and vortex breakdown in swirling flames. Combustion Science and Technology, 180(5), 809–832 (2008)

    Article  Google Scholar 

  54. STEIN, O. and KEMPF, A. LES of the Sydney swirl flame series: a study of vortex breakdown in isothermal and reacting flows. Proceedings of the Combustion Institute, 31(2), 1755–1763 (2007)

    Article  Google Scholar 

  55. PETERS, N. Turbulent Combustion, Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  56. JANICKA, J. and PETERS, N. Prediction of turbulent jet diffusion flame lift-off using a PDF transport equation. International Symposium on Combustion, 19(1), 367–374 (1982)

    Article  Google Scholar 

  57. TURNS, S. R. An Introduction to Combustion: Concepts and Applications, McGraw-Hill, Boston (2000)

    Google Scholar 

  58. ILBAS, M. The effect of thermal radiation and radiation models on hydrogen-hydrocarbon combustion modelling. International Journal of Hydrogen Energy, 30(10), 1113–1126 (2005)

    Article  Google Scholar 

  59. CHRISTO, F. C. and DALLY, B. B. Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combustion and Flame, 142(1–2), 117–129 (2005)

    Article  Google Scholar 

  60. WELLER, H. G., TABOR, G., JASAK, H., and FUREBY, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620–631 (1998)

    Article  Google Scholar 

  61. ISSA, R. I. Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40–65 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vakilipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakilipour, S., Tohidi, Y., Al-Zaili, J. et al. A numerical investigation of CO2 dilution on the thermochemical characteristics of a swirl stabilized diffusion flame. Appl. Math. Mech.-Engl. Ed. 41, 327–348 (2020). https://doi.org/10.1007/s10483-020-2571-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2571-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation