Skip to main content
Log in

Large Eddy Simulations of Swirling Non-premixed Flames With Flamelet Models: A Comparison of Numerical Methods

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This work investigates the application of large eddy simulation (LES) to selected cases of the turbulent non-premixed Sydney swirl flames. Two research groups (Loughborough University, LU and Imperial College, IC) have simulated these cases for different parameter sets, using two different and independent LES methods. The simulations of the non-reactive turbulent flow predicted the experimental results with good agreement and both simulations captured the recirculation structures and the vortex breakdown without major difficulties. For the reactive cases, the LES predictions were less satisfactory, and using two independent simulations has helped to understand the shortcomings of each. Furthermore one of the flames (SMH2) was found to be exceptionally hard to predict, which was supported by the lower amount of turbulent kinetic energy that was resolved in this case. However, the LES has identified modes of flame instability that were similar to those observed in some of the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Abdeli, Y.M.: Experiments in turbulent swirling non-premixed flames and isothermal flows. Ph.D. thesis, University of Sydney, Australia (2003)

  2. Al-Abdeli, Y.M., Masri, A.R.: Recirculation and flowfield regimes of unconfined non-reacting swirling flows. Exp. Thermal Fluid Sci. 27, 655–665 (2003)

    Article  Google Scholar 

  3. Al-Abdeli, Y.M., Masri, A.R.: Stability characteristics and flowfields of turbulent non-premixed swirling flames. Combust. Theory Model. 7, 731–766 (2003)

    Article  MATH  Google Scholar 

  4. Al-Abdeli, Y.M., Masri, A.R.: Precession and recirculation in turbulent swirling isothermal jets. Combust. Sci. Tech. 176, 645–665 (2004)

    Article  Google Scholar 

  5. Al-Abdeli, Y.M., Masri, A.R., Marquez, G.R., Starner, S.H.: Time-varying behaviour of turbulent swirling nonpremixed flames. Combust. Flame 146, 200–214 (2006)

    Article  Google Scholar 

  6. Anacleto, P.M., Fernandes, E.C., Heitor, M.V., Shtork, S.I.: Characteristics of precessing vortex core in the LPP combustor model. In: Proc. Second Int. Sym. Turb. Shear Flow Pheno. vol. 1, pp. 133–138 (2001)

  7. Bell, J.B., Colella, P.: A second order projection method for the incompressible navier-stokes equations. J. Comput. Phys. 85, 257–283 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Benjamin, T.B.: Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14, 593–605 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bilanin, A.J., Widnall, S.E.: Aircraft wake dissipation by sinusoidal instability and vortex breakdown. AIAA 107, 11–17 (1973)

    Google Scholar 

  10. Bilger, R.W.: The structure of turbulent non-premixed flames. Proc. Combust. Inst. 22, 475–488 (1988)

    Google Scholar 

  11. Billant, P., Chomaz, J.M., Huerre, P.: Experimental study of vortex breakdown in swirling jets. J. Fluid Mech. 376, 183–196 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Bowman, C.T., Hanson, R.K., Davidson, D.F., Gardiner, W.C. Jr., Lissianski, V., Smith, G.P., Golden, D.M., Frenklach, M., Goldenberg, M.: GRI 2.11. http://www.me.berkeley.edu/gri_mech (2006). Accessed 05 Nov 2007

  13. Branley, N., Jones, W.P.: Large eddy simulation of a turbulent non-premixed flame. Combust. Flame 127, 1914–1934 (2001)

    Article  Google Scholar 

  14. Buckley, P.L., Craig, R., Davis, D., Schwartzkopf, K.: The design and combustion performance of practical swirlers for integral rocket/ramjets. AIAA J. 21(5), 733–740 (1983)

    Article  ADS  Google Scholar 

  15. Chanaud, R.C.: Observations of osillatory motion in certain swirling flows. J. Fluid Mech. 21, 1–27 (1965)

    Article  Google Scholar 

  16. Dally, B.B., Masri, A.R.: Flow and mixing fields of turbulent bluff-body and jets flames. Combust. Theory Modeling 2, 193–219 (1998)

    Article  MATH  ADS  Google Scholar 

  17. Deardorff, J.: Stratocumulus-capped mixed layers derived from a three dimensional model. Boundary-Layer Meteorol. 18, 495–527 (1980)

    Article  ADS  Google Scholar 

  18. DeBruyn, S.M., Riley, J.J., Kosaly, G., Cook, A.W.: Investigation of modeling for non-premixed turbulent combustion. Flow Turbul. Combust. 60, 105–122 (1998)

    Article  Google Scholar 

  19. DiMare, F., Jones, W., Menzies, K.: Large eddy simulation of a model gas turbine combustor. Combust. Flame 137, 278–294 (2004)

    Article  Google Scholar 

  20. Ranga-Dinesh, K.K.J.: Large eddy simulation of turbulent swirling flames. PhD thesis, Loughborough University, UK (2007)

  21. Drozda, T.G., Sheikhi, M.R.H., Madnia, C.K., Givi, P.: Developments in formulation and application of the filtered density function. Flow Turbul. Combust. 78, 35–67 (2007)

    Article  Google Scholar 

  22. El-Asrag, H., Menon, S.: Large eddy simulation of bluff body stabilised swirling non-premixed flames. Proc. Combust. Inst. 31, 1747–1754 (2007)

    Article  Google Scholar 

  23. Escudier, M.: Confined vortex in flow machinery. Ann. Rev. Fluid Mech. 19, 27 (1987)

    Article  ADS  Google Scholar 

  24. Escudier, M.: Vortex breakdown: observations and explanations. Prog. Aerosp. Sci. 25, 189–229 (1988)

    Article  Google Scholar 

  25. Farokhi, S., Taghavi, R., Rice, E.J.: Effect of initial swirl distribution on the evaluation of a turbulent jet. AIAA J. 27(6), 700–706 (1988)

    Article  ADS  Google Scholar 

  26. Forkel, H., Janicka, J.: Large eddy simulation of a turbulent hydrogen diffusion flame. Flow Turbul. Combust. 65, 163–175 (2000)

    Article  MATH  Google Scholar 

  27. Freitag, M., Klein, M., Gregor, M., Geyer, D., Schneider, C., Dreizler, A., Janicka, J.: Mixing analysis of swirling recirculating flow using DNS and experimental data. Int. J. Heat Fluid Flow 27, 636–643 (2006)

    Article  Google Scholar 

  28. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid scale eddy viscosity model. Phys. Fluids 3(7), 1760–1765 (1991)

    Article  MATH  ADS  Google Scholar 

  29. Ghosal, S., Lund, T.S., Moin, P., Akselvoll, K.: A dynamic localization model for large eddy simulations of turbulent flows. J. Fluid Mech. 286, 229–255 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Grabowski, W.J., Berger, S.A.: Solutions of the navier-stokes equations for vortex breakdown. J. Fluid. Mech. 75, 525–544 (1976)

    Article  MATH  ADS  Google Scholar 

  31. Gupta, A.K., Lilly, D.G., Syred, N.: Swirl Flows. In: Swirl flows. Kent Engl: Abacus (1984)

  32. Hafez, M., Ahmed, J., Kuruvila, J., Salas, M.D.: Vortex breakdown simulation. AIAA 87, 1343–1349 (1987)

    Google Scholar 

  33. Hall, M.G.: Vortex breakdown. Ann. Rev. Fluid Mech. 4, 195 (1972)

    Article  ADS  Google Scholar 

  34. Harvey, J.K.: Some observation of the vortex breakdown phenomenon. J. Fluid Mech. 14, 585–592 (1962)

    Article  MATH  ADS  Google Scholar 

  35. IEA: International Energy Agency. In: World energy outlook. France (2002)

  36. James, S., Zhu, J., Anand, M.S.: Large eddy simulation of turbulent flames using filtered density function method. Proc. Combust. Inst. 31, 1737–1745 (2007)

    Article  Google Scholar 

  37. Kalt, P.A.M., Al-Abdeli, Y.M., Masri, A.R., Barlow, R.S.: Swirling turbulent non-premixed flames of methane: flowfield and compositional structure. Proc. Combust. Inst. 29, 1913–1919 (2002)

    Article  Google Scholar 

  38. Kempf, A.M.: Large eddy simulation of non-premixed turbulent flames. Ph.D. thesis, TU-Darmstadt, Germany (2003)

  39. Kempf, A.M., Forkel, H., Sadiki, A., Chen, J.-Y., Janicka, J.: Large-eddy simulation of a counterflow configuration with and without combustion. Proc. Combust. Inst. 28, 35–40 (2000)

    Google Scholar 

  40. Kempf, A.M., Janicka, J., Lindstedt, R.P.: Large eddy simulation of a bluff body stabilized non-premixed flame. Combust. Flame 144, 170–189 (2006)

    Article  Google Scholar 

  41. Kempf, A.M., Klein, M., Janicka, J.: Efficient generation of initial and inflow conditions for transient turbulent flow in arbitary geometries. Flow Turbul. Combust. 74, 67–84 (2005)

    Article  MATH  Google Scholar 

  42. Kim, W., Menon, S., Mongia, H.: Large eddy simulation of a gas turbine combustor flow. Combust. Sci. Tech. 143, 1–25 (1999)

    Article  Google Scholar 

  43. Kirkpatrick, M.P.: A large eddy simulation code for industrial and enviromental flows. Ph.D. thesis, University of Sydney, Australia (2002)

  44. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulation. J. Comput. Phys. 186, 652–665 (2003)

    Article  MATH  ADS  Google Scholar 

  45. Kollmann, W., Ooi, A.S.H., Chong, M.S., Soria, J.: Direct numerical simulation of vortex breakdown in swirling jets. J. Turbulence 2(Art. No. N5), 1–17 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  46. Kopecky, R.M., Torrance, K.E.: Initiation and structure of axisymmetric eddies in a rotating stream. Comput. Fluids. 1, 289–300 (1973)

    Article  MATH  Google Scholar 

  47. Krisbus, A., Leibovich, S.: Instability of strong non-linear waves in vortex flows. J. Fluid Mech. 269, 247–265 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  48. Lambourne, N.C., Bryer, D.W.: The bursting of leading edge vortices—some observations and discussion of the phenomenon. Aeronaut. Res. Counc. 36, 3862–3870 (1961)

    Google Scholar 

  49. Leibovich, S.: The structure of vortex breakdown. Ann. Rev. Fluid Mech. 10, 221 (1978)

    Article  ADS  Google Scholar 

  50. Leibovich, S., Ma, H.Y.: Soliton propagation on vortex cores and the hasimoto soliton. Phys. Fluids 26, 3173–3190 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. Leonard, B.P.: SHARP simulation of discontinuities in highly convective steady flow. Technical Report 100240, NASA Tech. Mem. (1987)

  52. Lessen, M., Singh, P.J., Paillet, F.: The stability of trailing line vortex. J. Fluid Mech. 63, 753–763 (1974)

    Article  MATH  ADS  Google Scholar 

  53. Ludweig, H.: Experimentelle Nachpruefung der Stabilitaetstheorien fuer reibungsfreie Stroemungen mit schraubenlinienfoermigen Stromlinien. Flugwiss 12(8), 304–309 (1965)

    Google Scholar 

  54. Lund, T., Wu, X., Squires, K.: Generation of turbulent inflow data for spatially developing boundary layer simulations. J. Comput. Phys. 140, 233–258 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  55. Mahesh, K., Constantinescu, G., Iaccarino, G. Apte, S., Ham, F., Moin, P.: Large eddy simulation of reacting turbulent flows in complex geometries. ASME J. Appl. Mech. 73, 374–381 (2006)

    Article  MATH  Google Scholar 

  56. Malalasekera, W., Ranga-Dinesh, K.K.J., Ibrahim, S.S., Kirkpatrick, M.P.: Large eddy simulation of isothermal turbulent swirling jets. Combust. Sci. Tech. 179, 1481–1525 (2007)

    Article  Google Scholar 

  57. Masri, A.R., Kalt, P.A.M., Barlow, R.S.: The compositional structure of swirl stabilised turbulent non-premixed flames. Combust. Flame 137, 1–37 (2004)

    Article  ADS  Google Scholar 

  58. Masri, A.R., Pope, S.B., Dally, B.B.: Probability density function computation of a strongly swirling nonpremixed flame stabilized on a new burner. Proc. Combust. Inst. 28, 123–131 (2000)

    Article  Google Scholar 

  59. Naughton, J.W., Cattafesta, L.N., Settles, G.S.: An experimental study of compressible turbulent mixing enhancement in swirling jets. J. Fluid Mech. 330, 271–305 (1997)

    Article  ADS  Google Scholar 

  60. Navarro-Martinez, S., Kronenburg, A.: Investigation of LES-CMC modelling in a bluff-body stabilized non-premixed flame. In: Proc. European Combust. Meeting, pp. 1–6. Louvain- la-Neuve, Belgium (2005)

  61. Oefelein, J.C.: Large eddy simulation of turbulent combustion processes in propulsion and power systems. Prog. Aero. Sci. 42, 2–37 (2006)

    Article  Google Scholar 

  62. Pauley, L.L., Moin, P., Reynolds, W.C.: The structure of two-dimensional separation. J. Fluid Mech. 220, 397–411 (1990)

    Article  ADS  Google Scholar 

  63. Peckham, D.H., Atkinson, S.A.: Preliminary results of low speed wind tunnel test on a gothic wing of aspect ratio 1.0. ARC CP 508 (1957)

  64. Peters, N.: Turbulent Combustion. In: Turbulent combustion. Cambridge University Press (2000)

  65. Pierce, C.D., Moin, P.: Progress-variable approach for large eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  66. Piomelli, U., Liu, J.: Large eddy simulation of rotating channel flows using a localized dynamic model. Phys. Fluids 7, 839–848 (1995)

    Article  MATH  ADS  Google Scholar 

  67. Pitsch, H.: A C++ computer program for 0-D and 1-D laminar flame calculations. Technical report, RWTH Aachen (1998)

  68. Pitsch, H., Steiner, H.: Large eddy simulation of a turbulent piloted methane-air diffusion flame (Sandia flame D). Phys. Fluids 12(10), 2541–2554 (2000)

    Article  ADS  Google Scholar 

  69. Raman, V., Pitsch, H.: Large eddy simulation of bluff body stabilized non-premixed flame using a recursive filter refinement procedure. Combust. Flame 142, 329–347 (2005)

    Article  Google Scholar 

  70. Randall, J.D., Leibovich, S.: The critical state: a trapped wave model of vortex breakdown. J. Fluid Mech. 53, 495–508 (1973)

    Article  ADS  Google Scholar 

  71. Roux, A., Gicquel, L.Y.M., Sommerer, Y., Poinsot, T.J.: Large eddy simulation of mean and oscillating flow in a side-dump ramjet combustor. Combust. Flame 152, 154–176 (2008)

    Article  Google Scholar 

  72. Ruith, M.R., Chen, P., Meiburg, E., Maxworthy, T.: Three dimensional vortex breakdown in swirling jets and wakes : direct numerical simulation. J. Fluid Mech. 486, 331–378 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  73. Sankaran, V., Menon, S.: LES of spray combustion in swirling flows. J. Turbulence 3, 11–23 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  74. Sarpkaya, T.: Vortex breakdown in swirling conical flow. AIAA 9, 1792–1799 (1971)

    Article  ADS  Google Scholar 

  75. Schmitt, L.: Numerische Simulation turbulenter Grenzschichten (Large-Eddy-Simulation) Teil 1, Bericht 82/2. Ph.D. thesis, Lehrstuhl fuer Strömungsmechanik, Technische Universität München, Germany (1982)

  76. Schumann, U., Sweet, R.: A direct method for the solution of Poisson’s equation with neumann boundary conditions on a staggered grid of arbitrary size. J. Comp. Phys. 20, 171–182 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  77. Shi, X.: Numerical simulation of vortex breakdown. In: Proc. Collo. on VB, vol. 25, pp. 69–80. Sonderforschungsbereich (1985)

  78. Sick, V., Hildenbrand, F., Lindstedt, R.P.: Quantitative laser based measurements and detailed chemical kinetic modeling of nitric oxide concentrations in methane air counterflow diffusion flames. Proc. Combust. Inst. 27, 1401–1409 (1998)

    Google Scholar 

  79. Smagorinsky, J.: General circulation experiments with the primitive equations, the basic experiment. Mon. Weath. Rev. 91, 99–164 (1963)

    Article  ADS  Google Scholar 

  80. Spall, R.E., Gatski, T.B.: A numerical simulation of vortex breakdown. ASME F. Uns. Flow. Sep. 52, 25–33 (1987)

    ADS  Google Scholar 

  81. Squire, H.B.: Analysis of the Vortex Breakdown Phenomenon. Acadamic Verlag, 306 (1962)

  82. Stein, O., Kempf, A.M.: doi:10.1016/j.proci.2006.07.255. Appendix A: Supplementary data, File: mmc1.mpg

  83. Stein, O., Kempf, A.M.: LES of the Sydney swirl flame series: a study of vortex breakdown in isothermal and reacting flows. In: Proc. Combust. Inst. vol. 31, pp. 1755–1763 (2007)

  84. Stein, O., Kempf, A.M., Janicka, J.: LES of the Sydney swirl flame series: An initial investigation of the fluid dynamics. Combust. Sci. Tech. 179, 173–189 (2007)

    Article  Google Scholar 

  85. Syred, N., Beer, J.M.: The damping of precessing vortex cores by combustion in swirl generators. Ast. Acta 17, 783–801 (1972)

    Google Scholar 

  86. TNF: TNF8 Sydney swirl and bluff body flames. Experimental data download site. www.aeromech.usyd.edu/thermofluids (2006)

  87. VanDoorne, C.W.H.: Stereoscopic PIV on transition in pipe flow. Ph.D. thesis, TU Delft, Netherlands (2004)

  88. VanKan, J.: A second order accurate pressure correction scheme for viscous incompressible flow. J. Sci. Stat. Comput. 7, 870–891 (1986)

    Article  MathSciNet  Google Scholar 

  89. Wang, P., Bai, X.S.: Large eddy simulation of turbulent swirling flows in a dump combustor: a sensitivity study. Int. J. Numer. Methods. Flu. 47, 99–120 (2005)

    Article  MATH  Google Scholar 

  90. Wang, S., Yang, V., Hsiao, G., Hsieh, S.-Y., Mongia, H.C.: Large-eddy simulations of gas-turbine injector flow dynamics. J. Fluid Mech. 583, 99–122 (2007)

    Article  MATH  ADS  Google Scholar 

  91. Weber, R., Visser, B.M., Boysan, F.: Assessment of turbulent modelling for engineering prediction of swirling vortices in the near zone. Int. J. Heat Fluid Flow 11, 225–240 (1990)

    Article  ADS  Google Scholar 

  92. Zhou, G., Davidson, L., Olsson, E.: Transonic inviscid/turbulent airflow flow simulations using a pressure based method with higher order schemes. In: Deshpande, S.M., Desai, S.S., Narsimha, R. (eds.) Proceedings of the 14th ICNMFD, Lecture Notes in Physics, vol. 453, pp. 372–377. Springer-Verlag, Berlin (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kempf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kempf, A., Malalasekera, W., Ranga-Dinesh, K.K.J. et al. Large Eddy Simulations of Swirling Non-premixed Flames With Flamelet Models: A Comparison of Numerical Methods. Flow Turbulence Combust 81, 523–561 (2008). https://doi.org/10.1007/s10494-008-9147-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-008-9147-1

Keywords

Navigation