Skip to main content
Log in

Upshot of ohmically dissipated Darcy-Forchheimer slip flow of magnetohydrodynamic Sutterby fluid over radiating linearly stretched surface in view of Cash and Carp method

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The present work concerns the momentum and heat transmission of the electro-magnetohydrodynamic (E-MHD) boundary layer Darcy-Forchheimer flow of a Sutterby fluid over a linear stretching sheet with slip. The nonlinear equations for the proposed model are analyzed numerically. Suitable techniques are used to transform the coupled nonlinear partial differential equations (PDEs) conforming to the forced balance law, energy, and concentration equations into a nonlinear coupled system of ordinary differential equations (ODEs). Numerical solutions of the transformed nonlinear system are obtained using a shooting method, improved by the Cash and Carp coefficients. The influence of important physical variables on the velocity, the temperature, the heat flux coefficient, and the skin-friction coefficient is verified and analyzed through graphs and tables. From the comprehensive analysis of the present work, it is concluded that by intensifying the magnitude of the Hartmann number, the momentum distribution decays, whereas the thermal profile of fluid increases. Furthermore, it is also shown that by aug- menting the values of the momentum slip parameter, the velocity profile diminishes. It is found that the Sutterby fluid model shows shear thickening and shear thinning behaviors. The momentum profile shows that the magnitude of velocity for the shear thickening case is dominant as compared with the shear thinning case. It is also demonstrated that the Sutterby fluid model reduces to a Newtonian model by fixing the fluid parameter to zero. In view of the limiting case, it is established that the surface drag in the case of the Sutterby model shows a trifling pattern as compared with the classical case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DARCY, H. Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris (1856)

    Google Scholar 

  2. FORCHHEIME, P. Wasserbewegung durch Boden. Zeitschrift des Vereines Deutscher Ingeneieure, 45, 1782–1788 (1901)

    Google Scholar 

  3. MUSKAT, M. The Flow of Homogeneous Fluids Through Porous Media, McGraw-Hill Book Com-pany, New York (1937)

    MATH  Google Scholar 

  4. PAL, D. and MONDAL, H. Hydromagnetic convective diffusion of species in Darcy-Forchheimer porous medium with nonuniform heat source/sink and variable viscosity. International Commu-nication in Heat and Mass Transfer, 39, 913–917 (2012)

    Article  Google Scholar 

  5. GANESH, N. V., HAKEEM, A. K. A., and GANGA, B. Darcy-Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and ohmic dissipations effects. Ain Shams Engineering Journal, 9, 939–951 (2018)

    Article  Google Scholar 

  6. HAQ, R. U., SOOMRO, F. A., MEKKAOUIC, T., and Al-MDALLAL, Q. M. MHD natural convection flow enclosure in a corrugated cavity filled with a porous medium. International Journal of Heat and Mass Transfer, 121, 1168–1178 (2018)

    Article  Google Scholar 

  7. HAYAT, T., MUHAMMAD, T., AL-MEZAL, S., and LIAO, S. J. Darcy-Forchheimer flow with variable thermal conductivity and Cattaneo-Christov heat flux. International Journal of Numerical Methods for Heat and Fluid Flow, 26, 2355–2369 (2016)

    Article  Google Scholar 

  8. MUHAMMAD, T., ALSAEDI, A., SHAHZAD, S. A., and HAYAT, T. A revised model fo. Darcy-Forchheimer flow of Maxwell nanofluid subject to convective boundary condition. Chinese Journal of Physics, 55, 963–976 (2017)

    Article  Google Scholar 

  9. SEDDEEK, M. A. Influence of viscous dissipation and thermophoresis on Darcy-Forchheimer mixed convection in a fluid saturated porous media. Journal of Colloids and Interface Science, 293, 137–142 (2006)

    Article  Google Scholar 

  10. JHA, B. K. and KAURANGINI, M. L. Approximate analytical solutions for the nonlinear Brinkman-Forchheimer-extended Darcy flow model. Applied Mathematics, 2, 1432–1436 (2011)

    Article  Google Scholar 

  11. BAKAR, S. A., ARIFIN, N. M., NAZAR, R., ALI, M. F., and POP, I. Forced convection boundary layer stagnation-point flow in Darcy-Forchheimer porous medium past a shrinking sheet. Frontiers in Heat and Mass Transfer, 7, 38–46 (2016)

    Google Scholar 

  12. AZIZ, T., MAHMOD, F. M., SHAHZAD, A., and ALI, R. Travelling wave solutions for the unsteady flow of a third grade fluid induced due to impulsive motion of flat porous plate embedded in a porous medium. Journal of Mechanics, 30, 527–535 (2017)

    Article  Google Scholar 

  13. GUHA, A. and PRADHAN, K. Natural convection of non-Newtonian power law fluids on a hori-zontal plate. International Journal of Heat and Mass Transfer, 70, 930–938 (2014)

    Article  Google Scholar 

  14. BIJJAN, S., DHIMAN, A., and GAUTAM, V. Laminar momentum and heat transfer phenomenon of power law dilatant fluid around an asymmetrically confined cylinder. International Journal of Thermal Science, 88, 110–127 (2015)

    Article  Google Scholar 

  15. AZHAR, E., IQBAL, Z., and MARAJ, E. N. Impact of entropy generation on stagnation point flow of Sutterby nanofluid: a numerical analysis. Zeitschrift f¨ur Naturforschung B-De Gruyter, 71, 837–848 (2016)

    Google Scholar 

  16. HAYAT, T., ZAHIR, H., MUSTAFA, M., and ALSAEDI, A. Peristaltic flow of Sutterby fluid in a vertical channel with radiative heat transfer and compliant walls: a numerical study. Results in Physics, 6, 805–810 (2017)

    Article  Google Scholar 

  17. HAYAT, T., QURATULAIN, A. F., RAFIQ M., and AHMED, B. Joule heating and thermal radiation effects on peristalsis in curved configuration. Results in Physics, 6, 1088–1095 (2016)

    Article  Google Scholar 

  18. XIE, Z. Y. and JIAN, Y. J. Rotating electro-magnetohydrodynamic flow of power law fluid through a micro parallel channel. Colloids and Surfaces A, 529, 334–345 (2017)

    Article  Google Scholar 

  19. REHMAN, F. U., NADEEM, S., REHMAN, H. U., and HAQ, R. U. Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface. Results in Physics, 8, 316–323 (2018)

    Article  Google Scholar 

  20. HASHIM, K. M., AlSHOMRANI, A. S., and HAQ, R. U. Investigation of dual solutions in flow of a non-Newtonian fluid with homogeneous-heterogeneous reactions: critical points. European Journal of Mechanics B/Fluids, 68, 30–38 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. HAYAT, T., AYUB, S., ALSAEDI, A., TANVEER, A., and AHMAD, B. Numerical simulation for peristaltic activity of Sutterby fluid with modified Darcy’s law. Results in Physics, 7, 762–768 (2017)

    Article  Google Scholar 

  22. HAYAT, T., QURATULAIN, A. F., ALSAEDI, A., RAFIQ, M., and AHMAD, B. On effects of thermal radiation and radial magnetic field for peristalsis of Sutterby liquid in a curved channel with wall properties. Chinese Journal of Physics, 55, 2005–2024 (2017)

    Article  Google Scholar 

  23. SOOMRO, F. A., HAQ, R. U., Al-MDALLAL, M., and ZHANG, Q. Heat generation/absorption and nonlinear radiation effects on stagnation point flow of nanofluid along a moving surface. Results in Physics, 8, 404–414 (2018)

    Article  Google Scholar 

  24. HAYAT, T., ALI, S., ALSAEDI, A., and ALSULAMI, H. H. Influence of thermal radiation and Joule heating in the flow of Eyring-Powell fluid with Soret and Dufour effects. Journal of Applied Mathematics and Technical Physics, 57, 1051–1060 (2016)

    MATH  Google Scholar 

  25. HAYAT, T., ALI, S., AWAIS, M., and OBADIAT, S. Stagnation point flow of Burgers’ fluid over a stretching surface. Progress in Computational Fluid Dynamics, 13, 48–53 (2013)

    Article  MathSciNet  Google Scholar 

  26. WANG, C. Y. The three-dimensional flow due to a stretching flat surface. Physics of Fluids, 27, 1915–1927 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. POP, I. and NA, T. Y. A note on MHD flow over a stretching permeable surface. Mechanics Research and Communications, 25, 263–269 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. ARIEL, P. D. Generalized three dimensional flow due to a stretching sheet. Zeitschrift f¨ur Ange-wandte Mathematik und Mechanik, 83, 844–852 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. AKYZIL, F. T., BELLOUT, H., and VAJRAVELU, K. Diffusion of chemically reactive species in a porous medium over a stretching sheet. Journal of Mathematical Analysis and Applications, 320, 322–329 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. ARNOLD, J. C., ASIR, A. A., SOMOMASUNDARAM, S., and CHRISTOPHER, T. Heat transfer in a viscoelastic boundary layer flow over a stretching sheet. International Journal of Heat and Mass Transfer, 53, 112–118 (2006)

    Google Scholar 

  31. ALSAEDI, A., ALSAADI, F. E., ALI, S., and HAYAT, T. Stagnation point flow of Burgers’ fluid and mass transfer with chemical reaction and porosity. Journal of Mechanics, 29, 453–460 (2013)

    Article  Google Scholar 

  32. HAYAT, T., ALI, S., AWAIS, M., and ALHUTHALI, M. S. Newtonian heating in stagnation point flow of Burgers fluid. Applied Mathematics and Mechanics (English Edition), 36(1), 61–68 (2015) https://doi.org/10.1007/s10483-015-1895-9

    Article  MathSciNet  Google Scholar 

  33. HAYAT, T., ALI, S., FAROOQ, M. A., and ALSAEDI, A. On comparison of series and numer-ical solutions for flow of Eyring-Powell fluid with Newtonian heating and internal heat genera-tion/absorption. PLoS One, 10, e0129613 (2017)

    Article  Google Scholar 

  34. YOOSHIMURA, A. and PRUDHOMME, R. K. Wall slip corrections for Couette and parallel disc viscometers. Journal of Rheology, 32, 53–67 (1988)

    Article  Google Scholar 

  35. WANG, C. Y. Flow due to a stretching boundary with partial slip: an exact solution of the Navier-Stokes equations. Chemical Engineering Science, 57, 3745–3747 (2002)

    Article  Google Scholar 

  36. ANDERSON, H. I. Slip flow past a stretching surface. Acta Mechanica, 158, 121–125 (2002)

    Article  MATH  Google Scholar 

  37. MATTHEWS, M. T. and HILL, J. M. A note on the boundary layer equations with linear partial slip boundary condition. Applied Mathematical Letters, 21, 810–813 (2008)

    Article  MATH  Google Scholar 

  38. SAJID, M., ALI, N., ABBASS, Z., and JAVED, T. Stretching flows with general slip boundary condition. International Journal of Modern Physics B, 24, 5939–5947 (2010)

    Article  MATH  Google Scholar 

  39. WANG, C. Y. Analysis of viscous flow due to a stretching sheet with surface slip and suction. Nonlinear Analysis and Real World Applications, 10, 375–380 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. ALFEVEN, H. Existence of electromagnetic-hydrodynamic waves. nature, 150, 405–406 (1942)

    Article  Google Scholar 

  41. LIAO, S. J. On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. Journal of Fluid Mechanics, 488, 189–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. CORTELL, R. A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Applied Mathematics and Computation, 168, 557–566 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. USMAN, M., HAQ, R. U., HAMID, M., and WANG, W. Least square study of heat transfer of water based Cu and Ag nanoparticles along a converging/diverging channel. Journal of Molecular Liquids, 249, 856–867 (2018)

    Article  Google Scholar 

  44. ISHAK, A., NAZAR, R., and POP, I. Magnetohydrodynamic (MHD) flow and heat transfer due to a stretching cylinder. Energy Conversion and Management, 49, 3265–3269 (2008)

    Article  MATH  Google Scholar 

  45. HAQ, R. U., SOOMRO, F. A., and HAMMOUCH, Z. Heat transfer analysis of CuO-water enclosed in a partially heated rhombus with heated square obstacle. International Journal of Heat and Mass Transfer, 118, 773–784 (2018)

    Article  Google Scholar 

  46. ELLAHI, R., SHIVANIAN, E., ABBASBANDY, S., and HAYAT, T. Numerical study of mag-netohydrodynamics generalized Couette flow of Eyring-Powell fluid with heat transfer and slip condition. International Journal for Numerical Methods of Heat and Fluid Flow, 26, 1433–1445 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. USMAN, M., SOOMRO, F. A., HAQ, R. U., WANG, W., and DEFERTLI, O. Thermal and velocity slip effects on Casson nanofluid flow over an inclined permeable stretching cylinder via collocation method. International Journal of Heat and Mass Transfer, 122, 1255–1263 (2018)

    Article  Google Scholar 

  48. USMAN, M., ZUBAIR, T., HAMAID, M., HAQ, R. U., and WANG, W. Wavelets solution of MHD 3-D fluid flow in the presence of slip and thermal radiation effects. Physics of Fluids, 30, 023104 (2018)

    Article  Google Scholar 

  49. HAQ, R. U., KAZMI, S. N., and MEKKAOUI, T. Thermal management of water based SWCNTs enclosed in a partially heated trapezoidal cavity via FEM. International Journal of Heat and Mass Transfer, 112, 972–982 (2017)

    Article  Google Scholar 

  50. CATTANEO, C. Sulla conduzione del calore. Atti del Seminario Matematico e Fisico dell Univer-sita di Modena, 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  51. TIBULLO, V. and ZAMPOLI, V. A uniqueness result for th. Cattaneo-Christov heat conduction model applied to incompressible fluids. Mechanics Research Communications, 38, 77–79 (2011)

    Article  MATH  Google Scholar 

  52. CHRISTOV, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communications, 36, 481–486 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. STRAUGHAN, B. Thermal convection with the Cattaneo-Christov model. International Journal of Heat and Mass Transfer, 53, 95–98 (2010)

    Article  MATH  Google Scholar 

  54. HAN, S., ZHENG, L., LI, C., and ZHANG, X. Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model. Applied Mathematical Letters, 38, 87–93 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. MUSTAFA, M. Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper convected Maxwell fluid. Advances in Physics, 5, 047109 (2015)

    Google Scholar 

  56. HAQ, R. U., HAMAOUCH, Z., HUSSAIN, S. T., and MEKKAOUIEKK, T. MHD mixed con-vection flow along a vertically heated sheet. International Journal of Hydrology and Energy, 42, 15925–15932 (2017)

    Article  Google Scholar 

  57. HAYAT, T., NAZ, S., WAQAS, M., and ALSAEDI, A. Effectiveness of Darcy-Forchheimer and nonlinear mixed convection aspects in stratifiedMaxwell nanomaterial flow induced by convectively heated surface. Applied Mathematics and Mechanics (English Edition), 39(10), 1373–1384 (2018) https://doi.org/10.1007/s10483-018-2374-8

    Article  MathSciNet  MATH  Google Scholar 

  58. KHAN, M., AHMED, J., and AHMAD, L. Chemically reactive and radiative von Kármán swirling flow due to a rotating disk. Applied Mathematics and Mechanics (English Edition), 39(9), 1295–1310 (2018) https://doi.org/10.1007/s10483-018-2368-9

    Article  MathSciNet  MATH  Google Scholar 

  59. MAHDY, A. Simultaneous impacts of MHD and variable wall temperature on transient mixed Cas-son nanofluid flow in the stagnation point of rotating sphere. Applied Mathematics and Mechanics (English Edition), 39(9), 1327–1340 (2018) https://doi.org/10.1007/s10483-018-2365-9

    Article  MathSciNet  Google Scholar 

  60. JAVAHERDEH, K. and NAJJARNEZAMI, A. Lattice Boltzmann simulation of MHD natural convection in a cavity with porous media and sinusoidal temperature distribution. Applied Mathe-matics and Mechanics (English Edition), 39(8), 1187–1200 (2018) https://doi.org/10.1007/s10483-018-2353-6

    Article  MathSciNet  Google Scholar 

  61. GUO, H., LIN, P., and LI, L. Asymptotic solutions for the asymmetric flow in a channel with porous retractable walls under a transverse magnetic field. Applied Mathematics and Mechanics (English Edition), 39(8), 1147–1164 (2018) https://doi.org/10.1007/s10483-018-2355-6

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bilal.

Additional information

Citation: BILAL, S., SOHAIL, M., NAZ, R., MALIK, M. Y., and ALGHAMDI, M. Upshot of ohmically dissipated Darcy-Forchheimer slip flow of magnetohydrodynamic Sutterby fluid over radiating linearly stretched surface in view of Cash and Carp method. Applied Mathematics and Mechanics (English Edition), 40(6), 861–876 (2019) https://doi.org/10.1007/s10483-019-2486-9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilal, S., Sohail, M., Naz, R. et al. Upshot of ohmically dissipated Darcy-Forchheimer slip flow of magnetohydrodynamic Sutterby fluid over radiating linearly stretched surface in view of Cash and Carp method. Appl. Math. Mech.-Engl. Ed. 40, 861–876 (2019). https://doi.org/10.1007/s10483-019-2486-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2486-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation