Skip to main content
Log in

Motion of a permeable shell in a spherical container filled with non-Newtonian fluid

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an analytical study of creeping motion of a permeable sphere in a spherical container filled with a micro-polar fluid. The drag experienced by the permeable sphere when it passes through the center of the spherical container is studied. Stream function solutions for the flow fields are obtained in terms of modified Bessel functions and Gegenbauer functions. The pressure fields, the micro-rotation components, the drag experienced by a permeable sphere, the wall correction factor, and the flow rate through the permeable surface are obtained for the frictionless impermeable spherical container and the zero shear stress at the impermeable spherical container. Variations of the drag force and the wall correction factor with respect to different fluid parameters are studied. It is observed that the drag force, the wall correction factor, and the flow rate are greater for the frictionless impermeable spherical container than the zero shear stress at the impermeable spherical container. Several cases of interest are deduced from the present analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

radius of inner sphere

b :

radius of outer sphere

μ :

dynamic viscosity

κ :

vertex viscosity

ω :

microrotation vector

α, β, γ:

gyro viscosity coefficient

p :

pressure

υ θ :

micro-rotation component

ψ :

stream function

D :

drag force

W :

wall correction factor

Q :

flow rate

Kn-1/2(λr), In-1/2(λr):

modified Bessel functions

G n (ζ), H n (ζ):

Gegenbauer functions

References

  1. Eringen, A. C. Theory of micro-polar fluids. Journal of Mathematics and Mechanics, 16, 1–18 (1966)

    Google Scholar 

  2. Ramkisoon, H. and Majumdar, S. R. Drag on an axially symmetric body in the Stokes flow of micro-polar fluid. Physics of Fluids, 19, 16–21 (1976)

    Article  MathSciNet  Google Scholar 

  3. Rao, S. K. L. and Rao, P. B. Slow stationary micro-polar fluid past a sphere. Journal of Engineering Mathematics, 4, 209–217 (1971)

    Article  Google Scholar 

  4. Sawada, T., Kamata, T., Tanahashi, T., and Ando, T. Stokesian flow of a micro-polar fluid past a sphere. Keio Science and Technology Reports, 36, 33–47 (1983)

    MATH  Google Scholar 

  5. Ramkissoon, H. Flow of micro-polar fluid past a Newtonian fluid sphere. Journal of Applied Mathematics and Mechanics, 12, 635–637 (1985)

    MATH  Google Scholar 

  6. Srinivasacharya, D. and Rajyalakshmi, I. Creeping flow of micro-polar fluid past a porous sphere. Applied Mathematics and Computation, 153, 843–854 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Saad, E. I. Cell models for micro-polar flow past a viscous fluid sphere. Meccanica, 47, 2055–2068 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gupta, B. R. and Deo, S. Axisymmetric creeping flow of a micro-polar fluid over a sphere coated with a thin fluid film. Journal of Applied Fluid Mechanics, 6, 149–155 (2013)

    Google Scholar 

  9. Leonov, A. I. The slow stationary flow of a viscous fluid about a porous sphere. Journal of Applied Mathematics and Mechanics, 26, 564–566 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nandakumar, K. and Masliyah, J. H. Laminar flow past a permeable sphere. The Candadian Journal of Chemical Engineering, 60, 202–211 (1982)

    Article  Google Scholar 

  11. Masliyah, J. H. and Polikar, M. Terminal velocity of porous spheres. The Canadian Journal of Chemical Engineering, 58, 299–302 (1980)

    Article  Google Scholar 

  12. Wolfersdorf, L. V. Stokes flow past a sphere with permeable surface. Journal of Applied Mathematics and Mechanics, 69, 111–112 (1989)

    MathSciNet  MATH  Google Scholar 

  13. Padmavati, B. S., Amaranath, T., and Palaniappan, D. Stokes flow past a permeable sphere: non-axisymmetric case. Journal of Applied Mathematics and Mechanics, 74, 290–292 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Palaniappan, D., Usha, R., Nigam, S. D., and Amaranath, T. Sphere theorem for Stokes flow. Mechanics Research Communications, 17, 173–174 (1990)

    Article  MATH  Google Scholar 

  15. Vasudeviah, M. and Malathi, V. Slow viscous flow past a spinning sphere with permeable surface. Mechanics Research Communications, 22, 191–200 (1995)

    Article  MATH  Google Scholar 

  16. Murthy, J. V. R., Srinivasacharyulu, N., and Aparna, P. Uniform flow of an incompressible couple stress fluid past a permeable sphere. Bulletin Calcutta Mathematical Society, 99, 293–304 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Aparna, P. and Murthy, J. V. R. Uniform flow of an incompressible micro-polar fluid past a permeable sphere. International Electronic Engineering Mathematical Society, 8, 1–10 (2010)

    Google Scholar 

  18. Mishra, V. and Gupta, B. R. Drag on a permeable sphere placed in a micro-polar fluid with nonzero boundary condition for microrotations. Journal of Applied Mathematics and Computational Mechanics, 15, 97–109 (2016)

    Article  MathSciNet  Google Scholar 

  19. Cunningham, E. On the velocity of steady fall of spherical particles through fluid medium. Proceedings of the Royal Society of London Series A, 83, 357–369 (1910)

    Article  MATH  Google Scholar 

  20. Williams, W. E. On the motion of a sphere in a viscous fluid. Philosophical Magazine, 29, 526–550 (1915)

    MATH  Google Scholar 

  21. Haberman, W. L. and Sayre, R. M. Wall Effects for Rigid and Fluid Spheres in Slow Motion with a Moving Liquid, David Taylor Model Basin, Washington, D. C. (1958)

    Google Scholar 

  22. Usha, R. Creep flow with concentric permeable spheres in relative motion. Journal of Applied Mathematics and Mechanics, 75, 644–646 (1995)

    MATH  Google Scholar 

  23. Srinivasacharya, D. Motion of a porous sphere in a spherical container. Comptes Rendus MWcanique, 333, 612–616 (2005)

    Article  Google Scholar 

  24. Ramkissoon, H. and Rahaman, K. Non-Newtonian fluid sphere in a spherical container. Acta Mechanica, 149, 239–245 (2001)

    Article  MATH  Google Scholar 

  25. Ramkissoon, H. and Rahaman, K. Wall effects on a spherical particle. International Journal of Engineering Science, 41, 283–290 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Keh, H. J. and Chou, J. Creeping motions of a composite sphere in a concentric spherical cavity. Chemical Engineering Science, 59, 407–415 (2004)

    Article  Google Scholar 

  27. Srinivasacharya, D. and Prasad, M. K. On the motion of a porous spherical shell in a bounded medium. Advances in Theoretical and Applied Mechanics, 5, 247–256 (2012)

    Google Scholar 

  28. Jaiswal, B. R. and Gupta, B. R. Wall effects on Reiner-Rivlin liquid spheroid. Applied and Computational Mechanics, 8, 157–176 (2014)

    Google Scholar 

  29. Jaiswal, B. R. and Gupta, B. R. Gupta Stokes flow over composite sphere: liquid core with permeable shell. Journal of Applied Fluid Mechanics, 8, 339–350 (2015)

    Article  Google Scholar 

  30. Saad, E. I. Axisymmetric motion of a porous sphere through a spherical envelope subject to a stress jump condition. Meccanica, 51, 799–817 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jaiswal, B. R. Slow viscous stream over a non-Newtonian fluid sphere in an axisymmetric deformed spherical vessel. The European Physical Journal Plus, 131, 262–273 (2016)

    Article  Google Scholar 

  32. Happel, J. and Brenner, H. Low Reynolds Number Hydrodynamics, Springer, The Hague (1983)

    MATH  Google Scholar 

  33. Happel, J. and Brenner, H. Low Reynolds Number Hydrodynamics, Prentice-Hall, New Jersey (1965)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, V., Gupta, B.R. Motion of a permeable shell in a spherical container filled with non-Newtonian fluid. Appl. Math. Mech.-Engl. Ed. 38, 1697–1708 (2017). https://doi.org/10.1007/s10483-017-2287-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2287-8

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation