Skip to main content
Log in

Axisymmetric motion of a porous sphere through a spherical envelope subject to a stress jump condition

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The flow problem of an incompressible axisymmetrical quasisteady translation and steady rotation of a porous sphere in an eccentric spherical container is discussed using a combined analytical–numerical technique. A continuity of velocity components and normal stress together with the stress jump condition for the tangential stress are used at the interface between porous and clear-fluid regions. The fluid flow outside the particle is governed by the classical Stokes equations while the fluid flow inside the porous region is treated by Brinkman model. In order to solve the Stokes equations for the flow field, a general solution is constructed from the superposition of the basic solutions in the two spherical coordinate systems based on both the porous sphere and spherical envelope. Solutions for translational and rotational motion of porous eccentric spherical particle in a spherical envelope are obtained using the boundary collocation technique. The hydrodynamic drag force and couple exerted by the surrounding fluid on the porous particle which is proportional to the translational and angular velocities, respectively, are calculated with good convergence for various values of the ratio of porous-to-container radii, the relative distance between the centers of the porous and container, the stress jump coefficient, and a coefficient that is proportional to the permeability. In the limits of the motions of a porous sphere in a concentric container and near a container surface with a small curvature, the numerical values of the normalized drag force and the normalized coupling coefficient are in good agreement with the available values in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ehlers W, Bluhm J (2002) Porous media: theory, experiments and numerical applications. Springer, Berlin

    Book  MATH  Google Scholar 

  2. Stokes GG (1851) On the effect of the internal friction of fluid on pendulums. Trans Camb Phil Soc 9:8–106

    ADS  Google Scholar 

  3. Happel J, Brenner H (1983) Low Reynolds number hydrodynamics. Martinus Nijoff, The Hague

    MATH  Google Scholar 

  4. Kim S, Karrila SJ (2005) Microhydrodynamics: principles and selected applications. Dover, New York

    Google Scholar 

  5. Vafai K (2005) Handbook of porous media, 2nd edn. Taylor & Francis, New York

    Book  MATH  Google Scholar 

  6. Nabovati A, Llewellin EW, Sousa ACM (2009) A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method. Compos A 40:860–869

    Article  Google Scholar 

  7. Brinkman HC (1947) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res A1:27–34

    MATH  Google Scholar 

  8. Brinkman HC (1947) On the permeability of media consisting of closely packed porous particles. Appl Sci Res A1:81–86

    Google Scholar 

  9. Debye P, Bueche AM (1948) Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J Chem Phys 16:573–579

    Article  ADS  Google Scholar 

  10. Beavers GS, Joseph DD (1967) Boundary conditions at naturally permeable wall. J Fluid Mech 30:197–207

    Article  ADS  Google Scholar 

  11. Michalopoulou AC, Burganos VN, Payatakes AC (1992) Creeping axisymmetric flow around a solid particle near a permeable obstacle. AIChE J 38:1213–1228

    Article  Google Scholar 

  12. Michalopoulou AC, Burganos VN, Payatakes AC (1993) Hydrodynamic interactions of two permeable particles moving slowly along their centerline. Chem Eng Sci 48:2889–2900

    Article  Google Scholar 

  13. Looker JR, Carnie SL (2004) The hydrodynamics of an oscillating porous sphere. Phys Fluids 16:62–72

    Article  ADS  MATH  Google Scholar 

  14. Prakash J, Raja Sekhar GP, Kohr M (2012) Faxén’s law for arbitrary oscillatory Stokes flow past a porous sphere. Arch Mech 64:41–63

    MathSciNet  MATH  Google Scholar 

  15. Prakash J, Raja Sekhar GP (2013) Estimation of the dynamic permeability of an assembly of permeable spherical porous particles using the cell model. J Eng Math 80:63–73

    Article  MathSciNet  Google Scholar 

  16. Laptev V (2003) Numerical solution of coupled flow in plain and porous media, PhD dissertation, TU Kaiserslautern

  17. Auriault J-L (2009) On the domain of validity of Brinkman’s equation. Transp Porous Media 79:215–223

    Article  MathSciNet  Google Scholar 

  18. Anderson JL, McKenzie PF, Webber RM (1991) Model for hydrodynamic thickness of thin polymer layers at solid/liquid interfaces. Langmuir 7:162–166

    Article  Google Scholar 

  19. Anderson JL, Solomentsev Y (1996) Hydrodynamic effects of surface layers on colloidal particles. Chem Eng Commun 148–150:291–314

    Article  Google Scholar 

  20. Cichocki B, Ekiel-Jezewska ML, Wajnryb E (2014) Hydrodynamic radius approximation for spherical particles suspended in a viscous fluid: influence of particle internal structure and boundary. J Chem Phys 140:164902

    Article  ADS  Google Scholar 

  21. Saad EI (2010) Translation and rotation of a porous spheroid in a spheroidal container. Can J Phys 88:689–700

    Article  ADS  Google Scholar 

  22. Koplik J, Levine H, Zee A (1983) Viscosity renormalization in the Brinkman equation. Phys Fluids 26:2864–2870

    Article  ADS  MATH  Google Scholar 

  23. Adler PM, Mills PM (1979) Motion and rupture of a porous sphere in a linear flow field. J Rheol 23:25–37

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Einstein A (1956) Investigations on the theory of the Brownian movement. Dover, New York

    MATH  Google Scholar 

  25. Lundgren TS (1972) Slow flow through stationary random beds and suspensions of spheres. J Fluid Mech 51:273–299

    Article  ADS  MATH  Google Scholar 

  26. Freed KF, Muthukumar M (1978) On the Stokes problem for a suspension of spheres at finite concentrations. J Chem Phys 68:2088–2096

    Article  ADS  Google Scholar 

  27. Sherwood JD (2006) Cell models for suspension viscosity. Chem Eng Sci 61:6727–6731

    Article  Google Scholar 

  28. Hsu CT, Cheng P (1985) The Brinkman model for natural convection about a semi-infinite vertical flat plate in a porous medium. Int J Heat Mass Transf 28:683–697

    Article  MATH  Google Scholar 

  29. Parvazinia M, Nassehi V, Wakeman RJ, Ghoreishy MHR (2006) Finite element modelling of flow through a porous medium between two parallel plates using the Brinkman equation. Transp Porous Media 63:71–90

    Article  Google Scholar 

  30. Saad EI (2013) Stokes flow past an assemblage of axisymmetric porous spherical shell-in-cell models: effect of stress jump condition. Meccanica 48:1747–1759

    Article  MathSciNet  MATH  Google Scholar 

  31. Ehrhardt M (2013) An introduction to fluid–porous interface coupling. In: Ehrhardt M (ed) Progress in computational physics, vol 2. Bentham Science Publishers, Bussum, pp 3–12

    Google Scholar 

  32. Neale G, Nader W (1974) Practical significance of Brinkman’s extension of darcy’s law: coupled parallel flows within a channel and a bounding porous medium. Can J Chem Eng 52:475–478

    Article  Google Scholar 

  33. Ochoa-Tapia JA, Whittaker S (1995) Momentum transfer at the boundary between a porous medium and a homogeneous fluid I: theoretical development, II: comparison with experiment. Int J Heat Mass Transf 38:2635–2655

    Article  MATH  Google Scholar 

  34. Valdes-Parada FJ, Goyeau B, Ramirez JA, Ochoa-Tapia JA (2009) Computation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equation. Transp Porous Media 78:439–457

    Article  Google Scholar 

  35. Tan H, Chen X, Pillai KM, Papathanasiou TD (2008) Evaluation of boundary conditions at the clear-fluid and porous-medium interface using the boundary element method. In: Proceedings of the 9th international conference on flow processes in composite materials, Montréal (Québec), Canada, 8–10 July (2008)

  36. Tan H, Pillai KM (2009) Finite element implementation of stress-jump and stress-continuity conditions at porous-medium, clear-fluid interface. Comput Fluids 38:1118–1131

    Article  MathSciNet  MATH  Google Scholar 

  37. Srinivasacharya D, Prasad MK (2012) Creeping motion of a porous approximate sphere with an impermeable core in a spherical container. Eur J Mech B Fluids 36:104–114

    Article  MathSciNet  MATH  Google Scholar 

  38. Srinivasacharya D, Prasad MK (2012) Steady rotation of a composite sphere in a concentric spherical cavity. Acta Mech Sin 28:653–658

    Article  ADS  MathSciNet  Google Scholar 

  39. Saad EI, Faltas MS (2014) Slow motion of a porous sphere translating along the axis of a circular cylindrical pore subject to a stress jump condition. Transp Porous Media 102:91–109

    Article  MathSciNet  Google Scholar 

  40. Saad EI (2015) Axisymmetric motion of a spherical porous particle perpendicular to two parallel plates with slip surfaces. Can J Phys 93:784–795

    Article  ADS  Google Scholar 

  41. Faltas MS, Saad EI (2012) Slow motion of a porous eccentric spherical particle-in-cell models. Transp Porous Media 95:133–150

    Article  MathSciNet  Google Scholar 

  42. Gluckman MJ, Pfeffer R, Weinbaum S (1971) A new technique for treating multiparticle slow viscous flow: axisymmetric flow past spheres and spheroids. J Fluid Mech 50:705–740

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Ganatos P, Weinbaum S, Pfeffer R (1980) A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 1. Perpendicular motion. J Fluid Mech 99:739–753

    Article  ADS  MATH  Google Scholar 

  44. Sangani AS, Behl S (1989) The planar singular solutions of Stokes and Laplace equations and their application to transport processes near porous surfaces. Phys Fluids A 1:21–37

    Article  ADS  MATH  Google Scholar 

  45. Faltas MS, Saad EI (2012) Stokes flow between eccentric rotating spheres with slip regime. Z Angew Math Phys 63:905–919

    Article  MathSciNet  MATH  Google Scholar 

  46. Felderhof BU, Sellier A (2012) Mobility matrix of a spherical particle translating and rotating in a viscous fluid confined in a spherical cell, and the rate of escape from the cell. J Chem Phys 136:054703

    Article  ADS  Google Scholar 

  47. Abade GC, Cichocki B, Jeżewska MLE, Nägele G, Wajnryb E (2010) Short-time dynamics of permeable particles in concentrated suspensions. J Chem Phys 132:014503

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Saad.

Appendices

Appendix 1

The functions appearing in Eqs. (2.23)–(2.36) are defined as

$$A_{1n}(r,\theta )=-r^{-n-1}\,(n+1)\,{\mathfrak {I}}_{n+1}(\cos \theta )\,\csc \theta,$$
(4.7)
$$B_{1n}(r,\theta )=-r^{1-n}\,\left( (n+1)\,{\mathfrak {I}}_{n+1}(\cos \theta )\,\csc \theta -2{\mathfrak {I}}_{n}(\cos \theta )\,\cot \theta \right),$$
(4.8)
$$C_{1n}(r,\theta )=-r^{n-2}\,\left( (n+1)\,{\mathfrak {I}}_{n+1}(\cos \theta )\,\csc \theta -(2n-1)\,{\mathfrak {I}}_{n}(\cos \theta )\,\cot \theta \right) =E_{{1n}}(r,\theta ),$$
(4.9)
$$D_{1n}(r,\theta )=-r^{n}\,\left( (n+1)\,{\mathfrak {I}}_{n+1}(\cos \theta )\,\csc \theta -(2n+1)\,{\mathfrak {I}}_{n}(\cos \theta )\,\cot \theta \right),$$
(4.10)
$$F_{1n}(r,\theta )=r^{-3/2}\left( r\,\alpha \,I_{n-3/2}(r\,\alpha )\,{\mathfrak {I}}_{n}(\cos \theta )\,\cot \theta -(n+1)\,I_{n-1/2}(r\,\alpha )\,{\mathfrak {I}}_{n+1}(\cos \theta )\,\csc \theta \right),$$
(4.11)
$$A_{2n}(r,\theta )=-r^{-n-1}\,P_{n}(\cos \theta ),$$
(4.12)
$$B_{2n}(r,\theta )=-r^{1-n}\,\left( 2\,{\mathfrak {I}}_{n}(\cos \theta )+P_{n}(\cos \theta )\right),$$
(4.13)
$$C_{2n}(r,\theta )=-r^{n-2}\,\left( (2n-1)\,{\mathfrak {I}}_{n}(\cos \theta )+P_{n}(\cos \theta )\right) =E_{2n}(r,\theta ),$$
(4.14)
$$D_{2n}(r,\theta )=-r^{n}\,\left( (2n+1)\,{\mathfrak {I}}_{n}(\cos \theta )+P_{n}(\cos \theta )\right),$$
(4.15)
$$F_{2n}(r,\theta )=-r^{-3/2}\,\left( r\,\alpha \,I_{n-3/2}(r\,\alpha )\,{\mathfrak {I}}_{n}(\cos \theta )+I_{n-1/2}(r\,\alpha )\,P_{n}(\cos \theta )\right),$$
(4.16)
$$A_{3n}(r,\theta )=2\mu \,(n+1)\,r^{-n-2}\,P_{n-1}(\cos \theta ),$$
(4.17)
$$B_{3n}(r,\theta )=2\mu \,\left( n+1-\frac{3}{n}\right) \,r^{-n}\,P_{n-1}(\cos \theta ),$$
(4.18)
$$C_{3n}(r,\theta )=2\mu \,(2-n)\,r^{n-3}\,P_{n-1}(\cos \theta ),$$
(4.19)
$$D_{3n}(r,\theta )=-2\mu \,\left( n-2-\frac{3}{n-1}\right) \,r^{n-1}\,P_{n-1}(\cos \theta ),$$
(4.20)
$$E_{3n}(r,\theta )=\tilde{\mu }\,\left( 4-2n-\frac{\alpha ^2\,r^2}{n-1}\right) \,r^{n-3}\,P_{n-1}(\cos \theta ),$$
(4.21)
$$F_{3n}(r,\theta )=-2\tilde{\mu }\,r^{-5/2}\,\left( r\,\alpha \,I_{n+1/2}(r\,\alpha )+(n-2)\,I_{n-1/2}(r\,\alpha )\right) \,P_{n-1}(\cos \theta ),$$
(4.22)
$$A_{4n}(r,\theta )=2\mu \,(n^2-1)\,r^{-n-2}\,{\mathfrak {I}}_{n}(\cos \theta )\,\csc \theta,$$
(4.23)
$$B_{4n}(r,\theta )=2\mu \,n\,(n-2)\,r^{-n}\,{\mathfrak {I}}_{n}(\cos \theta )\,\csc \theta,$$
(4.24)
$$C_{4n}(r,\theta )=2\mu \,n\,(n-2)\,r^{n-3}\,{\mathfrak {I}}_{n}(\cos \theta )\,\csc \theta =\frac{\mu }{\tilde{\mu }}\,E_{{4n}}(r,\theta ),$$
(4.25)
$$D_{4n}(r,\theta )=2\mu \,(n^2-1)\,r^{n-1}\,{\mathfrak {I}}_{n}(\cos \theta )\,\csc \theta,$$
(4.26)
$$F_{4n}(r,\theta )=-\tilde{\mu }\,r^{-5/2}\left( 2r\,\alpha \,I_{n+1/2}(r\,\alpha )-(2n^2-4n+r^2\,\alpha ^2)\,I_{n-1/2}(r\,\alpha )\right) \,{\mathfrak {I}}_{n}(\cos \theta )\,\csc \theta,$$
(4.27)
$$A_{5n}(r,\theta )=A_{1n}(r,\theta )\,\tan \theta _2+A_{2n}(r,\theta ),$$
(4.28)
$$B_{5n}(r,\theta )=B_{1n}(r,\theta )\,\tan \theta _2+B_{2n}(r,\theta ),$$
(4.29)
$$C_{5n}(r,\theta )=C_{1n}(r,\theta )\,\tan \theta _2+C_{2n}(r,\theta ),$$
(4.30)
$$D_{5n}(r,\theta )=D_{1n}(r,\theta )\,\tan \theta _2+D_{2n}(r,\theta ),$$
(4.31)
$$E_{5n}(r,\theta )=\mu \,\xi \,\alpha /\eta \,\left( E_{1n}(r,\theta )\,\cos \theta _1-E_{2n}(r,\theta )\,\sin \theta _1\right) - E_{4n}(r,\theta),$$
(4.32)
$$F_{5n}(r,\theta )=\mu \,\xi \,\alpha /\eta \,\left( F_{1n}(r,\theta )\,\cos \theta _1-F_{2n}(r,\theta )\,\sin \theta _1\right) -F_{4n}(r,\theta ),$$
(4.33)
$$A_{6n}(r,\theta )=A_{1n}(r,\theta )\,\cot \theta _2-A_{2n}(r,\theta ),$$
(4.34)
$$B_{6n}(r,\theta )=B_{1n}(r,\theta )\,\cot \theta _2-B_{2n}(r,\theta ),$$
(4.35)
$$C_{6n}(r,\theta )=C_{1n}(r,\theta )\,\cot \theta _2-C_{2n}(r,\theta ),$$
(4.36)
$$D_{6n}(r,\theta )=D_{1n}(r,\theta )\,\cot \theta _2-D_{2n}(r,\theta ),$$
(4.37)

where \(\eta =\sqrt{\mu /\tilde{\mu }}.\)

1.1 Translation of a porous sphere in a concentric spherical container

For appropriate comparison, we consider the quasisteady translational motion of a porous spherical particle of radius a in a concentric spherical envelope of radius b filled with an incompressible viscous fluid. We assume that the flow within the spherical container is Stokesian, and Brinkman’s model governs the flow inside the porous spherical particle. Under Stokes approximation the fundamental equation for the axisymmetric steady flow in terms of Stokes stream functions \(\psi ^{e,i}\) for the outside and inside regions of the porous sphere satisfy Eqs. (2.7) and (2.8), respectively.

The boundary conditions used here are as follows:

At the interface between the homogeneous fluid and porous-medium regions (\(r=1\)):

Continuity of the velocity components

$$\psi ^{i}=\psi ^{e},$$
(4.38)
$$\frac{\partial \psi ^{i}}{\partial r}=\frac{\partial \psi ^{e}}{\partial r},$$
(4.39)

Continuity of the normal stress

$$p^{i}-p^{e}+\frac{2\mu }{\sin \theta }\,\frac{\partial }{\partial r}\left[ \frac{1}{r^2}\left( \frac{1}{\eta ^2}\,\frac{\partial \psi ^{i}}{\partial \theta }-\frac{\partial \psi ^{e}}{\partial \theta }\right) \right] =0.$$
(4.40)

As mentioned earlier, Ochoa-Tapia stress jump boundary condition for tangential stress given by

$$2r\,\frac{\partial }{\partial r}\left[ \frac{1}{r}\,\left( \frac{1}{\eta ^2}\,\frac{\partial \psi ^{i}}{\partial r}-\frac{\partial \psi ^{e}}{\partial r}\right) \right] +L_{-1}\left( \psi ^{e}-\frac{1}{\eta ^2}\,\psi ^{i}\right) =\frac{\xi \,\alpha }{\eta }\,\frac{\partial \psi ^{i}}{\partial \theta }.$$
(4.41)

On the envelope surface (\(r=\lambda ^{-1}\)):

Condition of impenetrability may be written as

$$\frac{\partial \psi ^{e}}{\partial \theta }-r^2\,U_z\,\cos \theta \,\sin \theta =0,$$
(4.42)
$$\frac{\partial \psi ^{e}}{\partial r}-r\,U_z\,\sin ^2\theta =0,$$
(4.43)

The suitable solutions for satisfying the boundary conditions on spherical surfaces for the stream functions, appropriate to the external and internal motions in the spherical coordinates, is given by [3]

$$\psi ^{e}=\left( A\,r^{-1}+B\,r+C\,r^2+D\,r^4\right) \,{\mathfrak {I}}_2(\cos \theta ),$$
(4.44)
$$\psi ^{i}=\left( E\,r^2+\sqrt{r}\,F\,I_{3/2}(\alpha \,r)\right) \,{\mathfrak {I}}_2(\cos \theta ),$$
(4.45)

where \(A,\,B,\,C,\,D,\,E\) and F are arbitrary constants to be determined from the above boundary conditions (4.38)–(4.43).

The drag force is found to be

$$F_z=4\pi \,\mu \,a\,B=\frac{24\pi \,\mu \,U_z\,a\,\alpha }{\Delta _1}\,\left( 10\delta _1\,\delta _2\,\eta ^2+(\lambda ^5-1)\,[2\delta _1\,\delta _2\,(3\eta ^2+2)-\alpha ^3\,\delta _1-\delta _2\,\alpha ^2\,(2+\delta _1)]\right),$$
(4.46)

where

$$\begin{aligned} \Delta _1=\,& 4\left( 2\delta _1\,\delta _2\,\alpha \,(2+3\eta ^2) -\alpha ^4\,\delta _1-\delta _2\,\alpha ^3\,(2+\delta _1)\right) \,\lambda ^6 +9\left( \alpha ^4\,\delta _1+\delta _2\,\alpha ^3\,(2+\delta _1) +2\eta ^2\,\alpha ^2\,(3\delta _1-2)\right. \\&\left. +\,2\delta _1\,\delta _2\,\alpha \,(\eta ^2-2) +4\eta ^2\,\delta _1\,(2+3\eta ^2)\right) \,\lambda ^5 -10\left( \alpha ^4\,\delta _1+\delta _2\,\alpha ^3\,(2+\delta _1) +6\eta ^2\,\alpha ^2\,\delta _1\right. \\&\left. +\,2\delta _1\,\delta _2\,\alpha \,(3\eta ^2-2)\right) \,\lambda ^3 +9\left( \alpha ^4\,\delta _1+\delta _2\,\alpha ^3\,(2+\delta _1) +4\delta _1\,\delta _2\,\alpha \,(\eta ^2-1)\right) \,\lambda -4\alpha ^4\,\delta _1\\&-\,4\delta _2\,\alpha ^3\,(2+\delta _1)+6\eta ^2\,\alpha ^2\,(6+\delta _1) -2\delta _1\,\delta _2\,\alpha \,(9\eta ^2-8)+72\eta ^2\,\delta _1\,(\eta ^2-1). \end{aligned}$$

with \(\delta _1=\Lambda \,\alpha ^2-3,\;\delta _2=2\xi \,\eta -\alpha,\;\Lambda =(\alpha \,\coth \alpha -1)^{-1}.\)

As \(\eta =1,\) i.e., the case of effective Brinkman viscosity equal to the fluid viscosity, the drag is given by

$$F_z=\frac{24\pi \,\mu \,U_z\,a\,\alpha }{\Delta _2}\,\left( 10\delta _1\,\delta _3+(\lambda ^5-1)\,[10\delta _1\,\delta _3-\alpha ^3\,\delta _1-\delta _3\,\alpha ^2\,(2+\delta _1)]\right),$$
(4.47)

where

$$\begin{aligned} \Delta _2=\, & {} 4\left( 10\delta _1\,\delta _3\,\alpha -\alpha ^4\,\delta _1 -\delta _3\,\alpha ^3\,(2+\delta _1)\right) \,\lambda ^6 +9\left( \alpha ^4\,\delta _1+\delta _3\,\alpha ^3\,(2+\delta _1) +2\alpha ^2\,(3\delta _1-2)\right. \\&\left. -\,2\delta _1\,\delta _3\,\alpha +20\delta _1\right) \,\lambda ^5 -10\left( \alpha ^4\,\delta _1+\delta _3\,\alpha ^3\,(2+\delta _1) +6\alpha ^2\,\delta _1+2\delta _1\,\delta _3\,\alpha \right) \,\lambda ^3\\&+\,9\left( \alpha ^4\,\delta _1 +\delta _3\,\alpha ^3\,(2+\delta _1)\right) \,\lambda -4\alpha ^4\,\delta _1 -4\delta _3\,\alpha ^3\,(2+\delta _1)+6\alpha ^2\,(6+\delta _1) -2\delta _1\,\delta _3\,\alpha. \end{aligned}$$

with \(\delta _3=2\xi -\alpha.\) This agrees with the drag on the porous sphere case derived in [37]. Also, the same authors derived the drag force for \(\xi =0\) (the continuity of the tangential stress at the porous-fluid interface).

When permeability k vanishes, i.e. permeability parameter \(\alpha \rightarrow \infty,\) then the above model behave like a system of solid spherical particle in a spherical container. The hydrodynamic drag force in this case reduces to the following expression:

$$F_z=\frac{24\pi \,\mu \,U_z\,a\,(\lambda ^4+\lambda ^3+\lambda +1)}{(\lambda -1)^3\,(4\lambda ^2+7\lambda +4)}.$$
(4.48)

This result agrees with the earlier result [3].

Appendix 2

The functions appearing in Eqs. (3.14)–(3.16) are given by

$$a_{1n}(r,\theta )=r^{-n-1}\,P_{n}^1(\cos \theta ),$$
(4.49)
$$b_{1n}(r,\theta )=r^{n}\,P_{n}^1(\cos \theta ),$$
(4.50)
$$c_{1n}(r,\theta )=-r^{-1/2}\,I_{n+1/2}(r\,\alpha )\,P_{n}^1(\cos \theta ),$$
(4.51)
$$a_{2n}(r,\theta )=r^{-n-2}\,(n+2)\,P_{n}^1(\cos \theta ),$$
(4.52)
$$b_{2n}(r,\theta )=-r^{n-1}\,(1-n)\,P_{n}^1(\cos \theta ),$$
(4.53)
$$c_{2n}(r,\theta )=\eta ^{-2}\,r^{-3/2}\,\left( r\,\alpha \,I_{n+3/2}(r\,\alpha )-(1-n+r\,\xi \,\eta \,\alpha )\,I_{n+1/2}(r\,\alpha )\right) \,P_{n}^1(\cos \theta ),$$
(4.54)
$$a_{3n}(r,\theta )=\frac{1}{r_2\,\sin \theta _2}\,a_{1n}(r,\theta ),$$
(4.55)
$$b_{3n}(r,\theta )=\frac{1}{r_2\,\sin \theta _2}\,b_{1n}(r,\theta ).$$
(4.56)

1.1 Rotation of a porous sphere in a concentric spherical container

We now consider the steady rotational motion of a porous spherical particle of radius a located at the centre of a spherical vessel of radius b containing an incompressible viscous fluid. We have used the Brinkman’s model for the flow inside the porous sphere and Stokes model for the flow within the spherical container. The aim of this section is to obtain the hydrodynamic couple acting on the porous sphere in the presence of the container. The flow field in the porous region inside the porous sphere and in the clear region outside the porous sphere are still governed by Eqs. (3.3) and (3.5).

They must be solved subject to the following boundary conditions resulting from the continuity of velocity, and the stress jump condition at the porous-medium/clear fluid interface as well as the uniform velocity at the container surface:

At the fluid–porous interface (\(r=1\)):

$$q_\phi ^e=q_\phi ^i,$$
(4.57)
$$t_{r\phi }^i-t_{r\phi }^e=\frac{\xi \,\mu }{\sqrt{k}}\,q_\phi ^i.$$
(4.58)

On the container surface (\(r=\lambda ^{-1}\)):

$$q_\phi ^e=-\Omega _z\,a\,r\,\sin \theta.$$
(4.59)

The suitable solutions of the field Eqs. (3.3) and (3.5) for the present case, which are nonsingular everywhere in the flow outside and inside regions of the porous sphere [3], are

$$q_\phi ^e=\Omega _z\,a\,\left( A'\,r^{-2}+B'\,r\right) \,\sin \theta,$$
(4.60)
$$q_\phi ^i= \Omega _z\,a\,C'\,r^{-1/2}\,I_{3/2}(\alpha \,r)\,\sin \theta.$$
(4.61)

Moreover the corresponding shear stress components are given by

$$t_{r\phi }^e=-3\mu \,\Omega _z\,r^{-3}\,A'\,\sin \theta,$$
(4.62)
$$t_{r\phi }^i=\tilde{\mu }\,\Omega _z\,r^{-3}\,C'\,\left( \alpha \,r\,I_{1/2}(\alpha \,r)-3I_{3/2}(\alpha \,r)\right) \,\sin \theta.$$
(4.63)

The coefficients \(A',\,B'\) and \(C'\) are arbitrary constants to be determined from the above boundary conditions (4.57)–(4.59). Thus, we have

$$A'=\frac{\Delta _3}{(1-\lambda ^3)\,\Delta _3+3\eta ^2},$$
(4.64)
$$B'=-\frac{3\eta ^2+\Delta _3}{(1-\lambda ^3)\,\Delta _3+3\eta ^2},$$
(4.65)
$$C'=-\frac{3\alpha \,\eta ^2\,\Lambda ^3}{I_{1/2}(\alpha )\,[(1-\lambda ^3)\,\Delta _3+3\eta ^2]},$$
(4.66)

The hydrodynamic couple acting on the porous particle inside the spherical envelope is found to be

$$T_z=-8\pi \,\mu \,\Omega _z\,a^3\,A'=-\frac{8\pi \,\mu \,\Omega _z\,a^3\,\Delta _3}{(1-\lambda ^3)\,\Delta _3+3\eta ^2}.$$
(4.67)

If \(\eta =1,\) the hydrodynamic couple acting on the porous sphere in a concentric spherical container with the stress jump boundary condition at the porous-fluid interface is reduced to

$$T_z=\frac{8\pi \,\mu \,\Omega _z\,a^3\,(3+\xi \,\alpha -\Lambda ^3\,\alpha ^2)}{(1-\lambda ^3)\,(\Lambda ^3\,\alpha ^2-\xi \,\alpha )+3\lambda ^3}.$$
(4.68)

which agrees with the result obtained in [38]. Also, for the steady rotational motion of a porous sphere in a spherical container with continuity of tangential stress (\(\xi =0\)), the expression for the hydrodynamic couple in this case reduces to the corresponding result of Saad [21].

In the limit \(\alpha \rightarrow \infty\) (or \(k=0\)), the present system of porous particles reduces to that of a system of impermeable solid particles, and we have

$$T_z=\frac{8\pi \,\mu \,\Omega _z\,a^3}{1-\lambda ^3},$$
(4.69)

which is the well-known result [21].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, E.I. Axisymmetric motion of a porous sphere through a spherical envelope subject to a stress jump condition. Meccanica 51, 799–817 (2016). https://doi.org/10.1007/s11012-015-0239-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0239-4

Keywords

Navigation