Skip to main content
Log in

Stable Runge-Kutta discontinuous Galerkin solver for hypersonic rarefied gaseous flow based on 2D Boltzmann kinetic model equations

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A stable high-order Runge-Kutta discontinuous Galerkin (RKDG) scheme that strictly preserves positivity of the solution is designed to solve the Boltzmann kinetic equation with model collision integrals. Stability is kept by accuracy of velocity discretization, conservative calculation of the discrete collision relaxation term, and a limiter. By keeping the time step smaller than the local mean collision time and forcing positivity values of velocity distribution functions on certain points, the limiter can preserve positivity of solutions to the cell average velocity distribution functions. Verification is performed with a normal shock wave at a Mach number 2.05, a hypersonic flow about a two-dimensional (2D) cylinder at Mach numbers 6.0 and 12.0, and an unsteady shock tube flow. The results show that, the scheme is stable and accurate to capture shock structures in steady and unsteady hypersonic rarefied gaseous flows. Compared with two widely used limiters, the current limiter has the advantage of easy implementation and ability of minimizing the influence of accuracy of the original RKDG method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aristov, A. A. Direct Methods for Solving the Boltzmann Equation and Study of Non-equilibrium Flows, 1st ed., Springer, Dordrecht (2001)

    Book  MATH  Google Scholar 

  2. Alexeenko, A. A., Gimelshein, S. F., Muntz, E. P., and Ketsdever, A. D. Kinetic modeling of temperature driven flows in short microchannels. International Journal of Thermal Sciences, 45, 1045–1051 (2006)

    Article  Google Scholar 

  3. Kolobov, V. I., Bayyuk, S. A., Arslanbekov, R. R., Aristov, V. V., Frolova, A., and Zabelok, S. Construction of a unified continuum/kinetic solver for aerodynamic problems. Journal of Spacecraft and Rockets, 42, 598–606 (2005)

    Article  Google Scholar 

  4. Huang, A. B. and Giddens, D. P. The discrete ordinate method for the linearized boundary value problems in kinetic theory of gases. Proceedings of the 5th International Symposium on the Rarefied Gas Dynamics, Academic Press, New York (1967)

    Google Scholar 

  5. Baranger, C., Claudel, J., Hérouard, N., and Mieussens, L. Locally refined discrete velocity grids for stationary rarefied flow simulations. Journal of Computational Physics, 257, 572–593 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yang, J. Y. and Huang, J. C. Rarefied flow computations using nonlinear model Boltzmann equations. Journal of Computational Physics, 120, 323–339 (1995)

    Article  MATH  Google Scholar 

  7. Mieussens, L. and Struchtrup, H. Numerical comparison of Bhatnagar-Gross-Krook models with proper Prandtl number. Physics of Fluids, 16, 2797–2813 (2004)

    Article  MATH  Google Scholar 

  8. Li, Z. H. and Zhang, H. X. Numerical investigation from rarefied flow to continuum by solving the Boltzmann model equation. International Journal for Numerical Methods in Fluids, 42, 361–382 (2003)

    Article  MATH  Google Scholar 

  9. Morinishi, K. Numerical simulation for gas microflows using Boltzmann equation. Computers and Fluids, 35, 978–985 (2006)

    Article  MATH  Google Scholar 

  10. Titarev, V. A. Implicit numerical method for computing three-dimensional rarefied gas flows on unstructured meshes. Computational Mathematics and Mathematical Physics, 50, 1719–1733 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B. and Shu, C. W. The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. Journal of Computational Physics, 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhou, T., Li, Y., and Shu, C. W. Numerical comparison of WENO finite volume and Runge-Kutta discontinuous Galerkin methods. Journal of Scientific Computing, 16, 145–171 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Reed, W. H. and Hill, T. R. Triangular Mesh Methods for the Neutron Transport Equation, Los Almos Scientific Laboratory, Los Alamos (1973)

    Google Scholar 

  14. Toulorge, T. and Desmet, W. CFL conditions for Runge-Kutta discontinuous Galerkin methods on triangular grids. Journal of Computational Physics, 230, 4657–4678 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, H. and Xu, K. A Runge-Kutta discontinuous Galerkin method for viscous flow equations. Journal of Computational Physics, 224, 1223–1242 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gobbert, M., Webster, S., and Cale, T. A Galerkin method for the simulation of the transient 2-D/2-D and 3-D/3-D linear Boltzmann equation. Journal of Scientific Computing, 30, 237–273 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Baker, L. L. and Hadjiconstantinou, N. G. Variance-reduced Monte Carlo solutions of the Boltz- mann equation for low-speed gas flows: a discontinuous Galerkin formulation. International Journal for Numerical Methods in Fluids, 58, 381–402 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Alexeenko, A. A., Galitzine, C., and Alekseenko, A. M. High-order discontinuous Galerkin method for Boltzmann model equation. The 40th Thermophysics Conference, American Institute of Aeronautics and Astronautics, Seattle (2008)

    Google Scholar 

  19. Alekseenko, A. M. Numerical properties of high order discrete velocity solutions to the BGK kinetic equation. Applied Numerical Mathematics, 61, 410–427 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Su, W., Alexeenko, A. A., and Cai, G. A parallel Runge-Kutta discontinuous Galerkin solver for rarefied gas flows based on 2D Boltzmann kinetic equations. Computers and Fluids, 109, 123–136 (2015)

    Article  MathSciNet  Google Scholar 

  21. Jiang, G. and Shu, C. W. On a cell entropy inequality for discontinuous Galerkin methods. Mathematics of Computation, 62, 531–538 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Arten, A., Lax, P. D., and Leer, B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25, 35–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shu, C.W. TVB uniformly high-order schemes for conservation laws. Mathematics of Computation, 49, 105–121 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Biswas, R., Devine, K. D., and Flaherty, J. E. Parallel, adaptive finite element methods for conservation laws. Applied Numerical Mathematics, 14, 255–283 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Burbeau, A., Sagaut, P., and Bruneau, C. H. A problem-independent limiter for high-order Runge- Kutta discontinuous Galerkin methods. Journal of Computational Physics, 169, 111–150 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhu, J., Qiu, J., Shu, C. W., and Dumbser, M. Runge-Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes. Journal of Computational Physics, 227, 4330–4353 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu, J., Zhong, X., Shu, C. W., and Qiu, J. Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes. Journal of Computational Physics, 248, 200–220 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, X. and Shu, C. W. Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. Journal of Computational Physics, 230, 1238–1248 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, X., Xia, Y., and Shu, C. W. Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. Journal of Scientific Computing, 50, 29–62 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bhatnagar, P. L., Gross, E. P., and Krook, M. A model for collision processes in gases I: small amplitude processes in charged and neutral one-component systems. Physical Review, 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  31. Holway, L. H. New statistical models for kinetic theory: methods of construction. Physics of Fluids, 9, 1658–1673 (1966)

    Article  Google Scholar 

  32. Bird, G. A. Molecular Gas Dynamics and the Direct Simulation, 2nd ed., Clarendon, Oxford (1994)

    Google Scholar 

  33. Andries, P., Tallec, P. L., Perlat, J. P., and Perthame, B. The Gaussian-BGK model of Boltzmann equation with small Prandtl number. European Journal of Mechanics-B/Fluids, 19, 813–830 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Faires, R. L. and Burden, J. D. Numerical Analysis, 9th ed., Richard Stratton, Boston (2010)

    MATH  Google Scholar 

  35. Shu, C. W. and Osher, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mieussens, L. Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries. Journal of Computational Physics, 162, 429–466 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rykov, V. A., Titarev, V. A., and Shakhov, E. M. Numerical study of the transverse supersonic flow of a diatomic rarefied gas past a plate. Computational Mathematics and Mathematical Physics, 47, 136–150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Titarev, V. A. Conservative numerical methods for model kinetic equations. Computers and Fluids, 36, 1446–1459 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, X. and Shu, C. W. On maximum-principle-satisfying high order schemes for scalar conser- vation laws. Journal of Computational Physics, 229, 3091–3120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kolobov, V. I., Arslanbekov, R. R., Aristov, V. V., Frolova, V. V., and Zabelok, S. A. Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement. Journal of Computational Physics, 223, 589–608 (2007)

    Article  MATH  Google Scholar 

  41. Alsmeyer, H. Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. Journal of Fluid Mechanics, 74, 497–513 (1976)

    Article  Google Scholar 

  42. Yen, S. M. Temperature overshoot in shock waves. Physics of Fluids, 9, 1417–1418 (1966)

    Article  Google Scholar 

  43. Shu, C. W. A brief survey on discontinuous Galerkin methods in computational fluid dynamics. Advances in Mechanics, 43, 541–554 (2013)

    Google Scholar 

  44. Krivodonova, L., Xin, J., Remacle, J. F., Chevaugeon, N., and Flaherty, J. E. Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Applied Numerical Mathematics, 48, 323–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Qiu, J. and Shu, C. W. A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonscillatory limiters. SIAM Journal on Scientific Computing, 27, 995–1013 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Schreier, S. Compressible Flow, 2nd ed., Wiley, New York (1982)

    MATH  Google Scholar 

  47. Laney, C. B. Computational Gas Dynamics, 1st ed., Cambridge University Press, New York (1998)

    MATH  Google Scholar 

  48. Li, Z. H., Peng, A. P., Zhang, H. X., and Yang, J. Y. Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations. Progress in Aerospace Sciences, 74, 81–113 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Supercomputer Center in Tianjin. All the numerical tests are run on the TH-I cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Su.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11302017)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, W., Tang, Z., He, B. et al. Stable Runge-Kutta discontinuous Galerkin solver for hypersonic rarefied gaseous flow based on 2D Boltzmann kinetic model equations. Appl. Math. Mech.-Engl. Ed. 38, 343–362 (2017). https://doi.org/10.1007/s10483-017-2177-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2177-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation