Skip to main content
Log in

Dynamic behavior of rectangular crack in three-dimensional orthotropic elastic medium by means of non-local theory

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The dynamic behavior of a rectangular crack in a three-dimensional (3D) orthotropic elastic medium is investigated under a harmonic stress wave based on the non-local theory. The two-dimensional (2D) Fourier transform is applied, and the mixed-boundary value problems are converted into three pairs of dual integral equations with the unknown variables being the displacement jumps across the crack surfaces. The effects of the geometric shape of the rectangular crack, the circular frequency of the incident waves, and the lattice parameter of the orthotropic elastic medium on the dynamic stress field near the crack edges are analyzed. The present solution exhibits no stress singularity at the rectangular crack edges, and the dynamic stress field near the rectangular crack edges is finite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, K. Q. and Chen, Z. T. An interface crack moving between magnetoelectroelastic and functionally graded elastic layers. Applied Mathematical Modelling, 38, 910–925 (2014)

    Article  MathSciNet  Google Scholar 

  2. Liu, H. T., Zhou, Z. G., and Wu, W. J. Dynamic stress intensity factors of two 3D rectangular cracks in a transversely isotropic elastic material under a time-harmonic elastic P-wave. Wave Motion, 51, 1309–1324 (2014)

    Article  MathSciNet  Google Scholar 

  3. Itou, S. Transient dynamic stress intensity factors around two rectangular cracks in a nonhomogeneous interfacial layer between two dissimilar elastic half-spaces under impact load. Acta Mechanica, 192(1), 89–110 (2007)

    Article  MATH  Google Scholar 

  4. Zhou, Z. G., Liu, J. Y., and Wu, L. Z. Basic solutions of a 3D rectangular limited-permeable crack or two 3D rectangular limited-permeable cracks in piezoelectric materials. Meccanica, 47, 109–134 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rekik, M., El-Borgi, S., and Ounaies, Z. An axisymmetric problem of an embedded mixed-mode crack in a functionally graded magnetoelectroelastic infinite medium. Applied Mathematical Modelling, 38, 1193–1210 (2014)

    Article  MathSciNet  Google Scholar 

  6. Liu, H. T. and Zhou, Z. G. Basic solution of a plane rectangular crack in a 3D infinite orthotropic elastic material. Mechanics Research Communications, 61, 7–18 (2014)

    Article  Google Scholar 

  7. Liu, H. T., Zhou, Z. G., andWu, L. Z. Basic solution of two 3D rectangular cracks in an orthotropic elastic media. ZAMM Journal of Applied Mathematics and Mechanics, 11, 1215–1229 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Monfared, M. M. and Ayatollahi, M. Dynamic stress intensity factors of multiple cracks in an orthotropic strip with FGM coating. Engineering Fracture Mechanics, 109, 45–57 (2013)

    Article  Google Scholar 

  9. Shi, P. P., Sun, S., and Li, X. Arc-shaped interfacial crack in a non-homogeneous electro-elastic hollow cylinder with orthotropic dielectric layer. Meccanica, 48, 415–426 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eringen, A. C. and Kim, B. S. Stress concentration at the tip of crack. Mechanics Research Communications, 1(4), 233–237 (1974)

    Article  Google Scholar 

  11. Eringen, A. C. Non-local Polar Field Theory, Continuum Physics (ed. Eringen, A. C.), Vol. 4., Academic Press, New York, 205–267 (1976)

  12. Eringen, A. C. Linear crack subject to anti-plane shear. Engineering Fracture Mechanics, 12(2), 211–219 (1979)

    Article  Google Scholar 

  13. Zhou, Z. G. and Wang, B. Non-local theory solution of two collinear cracks in the functionally graded materials. International Journal of Solids and Structures, 43(5), 887–898 (2006)

    Article  MATH  Google Scholar 

  14. Zhou, Z. G., Du, S. Y., and Wu, L. Z. Investigation of anti-plane shear behavior of a Griffith permeable crack in functionally graded piezoelectric materials by use of the non-local theory. Composite Structures, 78(4), 575–583 (2007)

    Article  Google Scholar 

  15. Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, McGraw-Hill, New York, 828–930 (1958)

    Google Scholar 

  16. Yau, W. F. Axisymmetric slipless indentation of an infinite elastic cylinder. SIAM Journal on Applied Mathematics, 15(1), 219–227 (1967)

    Article  MATH  Google Scholar 

  17. Liu, H. T., Zhou, Z. G., and Wu, L. Z. Non-local theory solution to a 3D rectangular crack in an infinite transversely isotropic elastic material. Meccanica, 50, 1103–1120 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, H. T. and Zhou, Z. G. Non-local theory solution for a plane rectangular crack in a 3D infinite transversely isotropic elastic material under a time harmonic elastic P-wave. European Journal of Mechanic-A/Solids, 47, 327–340 (2014)

    Article  MathSciNet  Google Scholar 

  19. Liu, H. T., Zhou, Z. G., and Pan, S. D. Non-local theory solution for a 3D rectangular permeable crack in piezoelectric composite materials. Composite Structures, 119, 513–527 (2015)

    Article  Google Scholar 

  20. Eringen, A. C. and Kim, B. S. Relation between non-local elasticity and lattice dynamics. Crystal Lattice Defects, 7, 51–57 (1977)

    Google Scholar 

  21. Nowinski, J. L. On non-local theory of wave propagation in elastic plates. Journal of Applied Physics, 51, 608–613 (1984)

    Google Scholar 

  22. Yang, F. Q. Fracture mechanics for a mode I crack in piezoelectric materials. International Journal of Solids and Structures, 38(21), 3813–3830 (2001)

    Article  MATH  Google Scholar 

  23. Chen, W. Q., Lee, K. Y., and Ding, H. J. General solution for transversely isotropic magnetoelectro-thermo-elasticity and the potential theory method. International Journal of Engineering Science, 42(13/14), 1361–1379 (2004)

    Article  MATH  Google Scholar 

  24. Ding, H. J., Chen, B., and Liang, J. General solutions for coupled equations for piezoelectric media. International Journal of Solids and Structures, 33(16), 2283–2296 (1996)

    Article  MATH  Google Scholar 

  25. Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integral, Series and Products, Academic Press, New York, 1159–1161 (1980)

    MATH  Google Scholar 

  26. Erdelyi, A. Tables of Integral Transforms, Vol. 1, McGraw-Hill, New York, 34–89 (1954)

    Google Scholar 

  27. Pan, E. and Heyliger, P. R. Free vibrations of simply supported and multilayered magneto-electroelastic plates. Journal of Sound and Vibration, 252(3), 429–442 (2002)

    Article  Google Scholar 

  28. Eringen, A. C. Interaction of a dislocation with a crack. Journal of Applied Physics, 54(12), 6811–6817 (1983)

    Article  Google Scholar 

  29. Liu, H. T., Zhou, Z. G., Wu, L. Z., and Wu, W. J. Non-local theory solution to a rectangular crack in a 3D infinite orthotropic elastic medium. International Journal of Solids and Structures, 58, 207–219 (2015)

    Article  Google Scholar 

  30. Yang, Y. H. The non-local theory solution of orthotropic composite materials on the stress field near the crack tips. Journal of Solid Mechanics and Materials Engineering, 3(9), 1081–1089 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Liu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11272105 and 11572101)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhou, Z. Dynamic behavior of rectangular crack in three-dimensional orthotropic elastic medium by means of non-local theory. Appl. Math. Mech.-Engl. Ed. 38, 173–190 (2017). https://doi.org/10.1007/s10483-017-2161-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2161-9

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation