Skip to main content
Log in

Basic solutions of a 3-D rectangular limited-permeable crack or two 3-D rectangular limited-permeable cracks in piezoelectric materials

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The solutions of a 3-D rectangular limited-permeable crack or two 3-D rectangular limited-permeable cracks in piezoelectric materials were given by using the generalized Almansi’s theorem and the Schmidt method. At the same time, the electric permittivity of the air inside the rectangular crack was considered. The problem was formulated through Fourier transform as three pairs of dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. To solve the dual integral equations, the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials. Finally, the effects of the electric permittivity of the air inside the rectangular crack,the shape of the rectangular crack and the distance between two rectangular cracks on the stress and electric displacement intensity factors in piezoelectric materials were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sosa H, Pak YE (1990) Three-dimensional eigenfunction analysis of a crack in a piezoelectric ceramics. Int J Solids Struct 26:1–15

    Article  MATH  Google Scholar 

  2. Mikhailov GK, Parton VS (1990) Electromagnetoelasticity. Hemisphere, New York

    Google Scholar 

  3. Suo Z, Kuo CM, Barnett DM, Willis JR (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40:739–765

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Hao TH, Shen ZY (1994) A new electric boundary condition of electric fracture mechanics and its applications. Eng Fract Mech 47:793–802

    Article  Google Scholar 

  5. Rungamornrat J, Senjuntichai T (2009) Regularized boundary integral representations for dislocations and cracks in smart media. Smart Mater Struct 18:074010

    Article  ADS  Google Scholar 

  6. Gao H, Zhang TY, Tong P (1997) Local and global energy rates for an elastically yielded crack in piezoelectric ceramics. J Mech Phys Solids 45:491–510

    Article  ADS  Google Scholar 

  7. Narita K, Shindo Y (1999) Scattering of anti-plane shear waves by a finite crack in piezoelectric laminates. Acta Mech 134:27–43

    Article  MATH  MathSciNet  Google Scholar 

  8. Han JJ, Chen YH (1999) Multiple parallel cracks interaction problem in piezoelectric ceramics. Int J Solids Struct 36:3375–3390

    Article  MATH  Google Scholar 

  9. Zhou ZG, Zhang PW, Wu LZ (2007) Two parallel limited-permeable Mode-I cracks or four parallel limited-permeable Mode-I cracks in the piezoelectric materials. Int J Solids Struct 44(11–12):4184–4205

    Article  MATH  Google Scholar 

  10. Deeg WEF (1980) The analysis of dislocation, crack and inclusion problems in piezoelectric solids. Ph.D. thesis, Stanford University

  11. Pak YE (1990) Crack extension force in a piezoelectric material. J Appl Mech 57:647–653

    Article  MATH  Google Scholar 

  12. Parton VS (1976) Fracture mechanics of piezoelectric materials. Acta Astronaut 3:671–683

    Article  MATH  Google Scholar 

  13. Hao TH (2001) Multiple collinear cracks in a piezoelectric material. Int J Solids Struct 38(50–51):9201–9208

    Article  MATH  Google Scholar 

  14. Dascalu D, Homentcovschi D (2002) An intermediate crack model for flaws in piezoelectric solids. Acta Mech 154(1–4):85–100

    Article  MATH  Google Scholar 

  15. Wang BL, Han JC, Du SY (2004) Applicability of the crack face electrical boundary conditions in piezoelectric mechanics. Acta Mech Solida Sin 17(4):90–296

    Google Scholar 

  16. Wang BL, Mai YW (2004) Impermeable crack and permeable crack assumptions, which one is more realistic? J Appl Mech 71(4):575–578

    Article  MATH  ADS  Google Scholar 

  17. Soh AK, Fang DN, Lee KL (2000) Analysis of a bi-piezoelectric ceramic layer with an interfacial crack subjected to anti-plane shear and in-plane electric loading. Eur J Mech A, Solids 19:961–977

    Article  MATH  Google Scholar 

  18. Chen MC (2003) Application of finite-part integrals to the three-dimensional fracture problems for piezoelectric media, Part I: hypersingular integral equation and theoretical analysis. Int J Fract 121:133–148

    Article  Google Scholar 

  19. Chen MC (2003) Application of finite-part integrals to the three-dimensional fracture problems for piezoelectric media, Part II: numerical analysis. Int J Fract 121:149–161

    Article  Google Scholar 

  20. Chen MC (2005) 3D mode I crack analysis of piezoelectric. Comput Methods Appl Mech Eng 194:957–968

    Article  MATH  ADS  Google Scholar 

  21. Wippler K, Kuna M (2007) Crack analyses in three-dimensional piezoelectric structures by the BEM. Comput Mater Sci 39:261–266

    Article  Google Scholar 

  22. Jaroon R, Mark EM (2008) Analysis of fractures in 3D piezoelectric media by a weakly singular integral equation method. Int J Fract 151:1–27

    Article  Google Scholar 

  23. Chen WQ, Shioya T (1999) Fundamental solution for a penny-shaped crack in a piezoelectric medium. J Mech Phys Solids 47:1459–1475

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Wang B (1992) Three-dimensional analysis of a flat elliptical crack in a piezoelectric material. Int J Eng Sci 30:781–791

    Article  MATH  Google Scholar 

  25. Zhu BJ, Qin TY (2007) Hypersingular integral equation method for a three-dimensional crack in anisotropic electro-magneto-elastic bimaterials. Theor Appl Fract Mech 47:219–232

    Article  Google Scholar 

  26. Shang FL, Kuna M, Abendroth M (2003) Finite element analyses of three-dimensional crack problems in piezoelectric structures. Eng Fract Mech 70:143–160

    Article  Google Scholar 

  27. Itou S (1978) Three dimensional waves propagation in a cracked elastic solid. J Appl Mech 45:807–811

    Article  MATH  Google Scholar 

  28. Itou S (1999) 3D dynamic stress intensity factors at three rectangular cracks in an infinite elastic medium subjected to a time-harmonic stress wave. Arch Appl Mech 69:286–298

    Article  MATH  ADS  Google Scholar 

  29. Itou S (2001) 3D dynamic stress intensity factors around two parallel square cracks in an infinite elastic medium under impact load. Arch Appl Mech 71:53–62

    Article  MATH  ADS  Google Scholar 

  30. Itou S (2002) Dynamic stress intensity factors around two rectangular cracks in an infinite elastic plate under impact load. Mech Res Commun 29:225–234

    Article  MATH  Google Scholar 

  31. Chen WQ, Lee KY, Ding HJ (2004) General solution for transversely isotropic magneto-electro-thermo-elasticity and the potential theory method. Int J Eng Sci 42:1361–1379

    Article  MATH  Google Scholar 

  32. Morse PM, Feshbach H (1958) Methods of theoretical physics. McGraw-Hill, New York, pp 828–930

    Google Scholar 

  33. Yan WF (1967) Axisymmetric slipless indentation of an infinite elastic cylinder. SIAM J Appl Math 15:219–227

    Article  Google Scholar 

  34. Yang FQ (2001) Fracture mechanics for a Mode I crack in piezoelectric materials. Int J Solids Struct 38:3813–3830

    Article  MATH  Google Scholar 

  35. Ding HJ, Chen B, Liang J (1996) General solutions for coupled equations for piezoelectric media. Int J Solids Struct 33(16):2283–2296

    Article  MATH  Google Scholar 

  36. Erdelyi A (1954) Tables of integral transforms, vol 1. McGraw-Hill, New York, pp 34–89

    Google Scholar 

  37. Gradshteyn IS, Ryzhik IM (1980) Table of integral, series and products. Academic Press, New York, pp 1035–1037

    Google Scholar 

  38. Noda NA, Kihara TA (2002) Variation of the stress intensity factor along the front of a 3-D rectangular crack subjected to mixed-mode load. Arch Appl Mech 72:599–614

    Article  MATH  ADS  Google Scholar 

  39. Feng WJ, Li YS, Xu ZH (2009) Transient response of an interfacial crack between dissimilar magnetoelectroelastic layers under magnetoelectromechanical impact loadings: mode-I problem. Int J Solids Struct 46:3346–3356

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Gong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, ZG., Liu, JY. & Wu, L.Z. Basic solutions of a 3-D rectangular limited-permeable crack or two 3-D rectangular limited-permeable cracks in piezoelectric materials. Meccanica 47, 109–134 (2012). https://doi.org/10.1007/s11012-010-9418-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-010-9418-5

Keywords

Navigation