Skip to main content
Log in

Signalling in actinorhizal root nodule symbioses

  • Review
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Plants able to establish a nitrogen-fixing root nodule symbiosis with the actinobacterium Frankia are called actinorhizal. These interactions lead to the formation of new root organs, called actinorhizal nodules, where the bacteria are hosted intracellularly and fix atmospheric nitrogen thus providing the plant with an almost unlimited source of nitrogen for its nutrition. Like other symbiotic interactions, actinorhizal nodulation involves elaborate signalling between both partners of the symbiosis, leading to specific recognition between the plant and its compatible microbial partner, its accommodation inside plant cells and the development of functional root nodules. Actinorhizal nodulation shares many features with rhizobial nodulation but our knowledge on the molecular mechanisms involved in actinorhizal nodulation remains very scarce. However recent technical achievements for several actinorhizal species are allowing major discoveries in this field. In this review, we provide an outline on signalling molecules involved at different stages of actinorhizal nodule formation and the corresponding signalling pathways and gene networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Lateif K, Vaissayre V, Gherbi H et al (2013) Silencing of the chalcone synthase gene in Casuarina glauca highlights the important role of flavonoids during nodulation. New Phytol 199:1012–1021. https://doi.org/10.1111/nph.12326

    Article  CAS  PubMed  Google Scholar 

  • Alloisio N, Queiroux C, Fournier P et al (2010) The Frankia alni symbiotic transcriptome. Mol Plant Microbe Interact 23:593–607

    Article  CAS  PubMed  Google Scholar 

  • Auguy F, Abdel-Lateif K, Doumas P et al (2011) Activation of the isoflavonoid pathway in actinorhizal symbioses. Funct Plant Biol 38:690–696

    Article  CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488. https://doi.org/10.1007/s11103-008-9435-0

    Article  CAS  Google Scholar 

  • Beauchemin NJ, Furnholm T, Lavenus J et al (2012) Casuarina root exudates alter the physiology, surface properties, and plant infectivity of Frankia sp. strain CcI3. Appl Environ Microbiol 78:575–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry AM, Kahn RK, Booth MC (1989) Identification of indole compounds secreted by Frankia HFPArI3 in defined culture medium. Plant Soil 118:205–209

    Article  CAS  Google Scholar 

  • Cérémonie H, Cournoyer B, Maillet F et al (1998) Genetic complementation of rhizobial nod mutants with Frankia DNA: artifact or reality? Mol Gen Genet MGG 260:115–119

    Article  PubMed  Google Scholar 

  • Cérémonie H, Debellé F, Fernandez MP (1999) Structural and functional comparison of Frankia root hair deforming factor and rhizobia Nod factor. Can J Bot 77:1293–1301

    Google Scholar 

  • Chabaud M, Gherbi H, Pirolles E et al (2016) Chitinase-resistant hydrophilic symbiotic factors secreted by Frankia activate both Ca2+ spiking and NIN gene expression in the actinorhizal plant Casuarina glauca. New Phytol 209:86–93. https://doi.org/10.1111/nph.13732209:86-93

    Article  CAS  PubMed  Google Scholar 

  • Champion A, Lucas M, Tromas A et al (2015) Inhibition of auxin signaling in Frankia species-infected cells in Casuarina glauca nodules leads to increased nodulation. Plant Physiol 167:1149–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cissoko M, Hocher V, Gherbi H et al (2018) Actinorhizal signaling molecules: Frankia root hair deforming factor shares properties with NIN inducing factor. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01494

    Article  PubMed  PubMed Central  Google Scholar 

  • Clavijo F, Diedhiou I, Vaissayre V et al (2015) The Casuarina NIN gene is transcriptionally activated throughout Frankia root infection as well as in response to bacterial diffusible signals. New Phytol 208:887–903. https://doi.org/10.1111/nph.13506

    Article  CAS  PubMed  Google Scholar 

  • Dar TA, Uddin M, Khan MMA et al (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57

    Article  CAS  Google Scholar 

  • Demina IV, Persson T, Santos P et al (2013) Comparison of the nodule vs. root transcriptome of the actinorhizal plant Datisca glomerata: actinorhizal nodules contain a specific class of defensins. PLoS ONE 8:e72442. https://doi.org/10.1371/journal.pone.0072442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ (2011) Phylogenetic perspectives on the origins of nodulation. Mol Plant Microbe Interact 24:1289–1295

    Article  CAS  PubMed  Google Scholar 

  • Fournier J, Imanishi L, Chabaud M et al (2018) Cell remodeling and subtilase gene expression in the actinorhizal plant Discaria trinervis highlight host orchestration of intercellular Frankia colonization. New Phytol 219:1018–1030. https://doi.org/10.1111/nph.15216

    Article  CAS  PubMed  Google Scholar 

  • Gabbarini L, Wall L (2008) Analysis of nodulation kinetics in FrankiaDiscaria trinervis symbiosis reveals different factors involved in the nodulation process. Physiol Plant 133:776–785

    Article  CAS  PubMed  Google Scholar 

  • Gabbarini L, Wall L (2011) Diffusible factors involved in early interactions of actinorhizal symbiosis are modulated by the host plant but are not enough to break the host range barrier. Funct Plant Biol 38:671–681

    Article  CAS  Google Scholar 

  • Ghelue MV, Løvaas E, Ringø E, Solheim B (1997) Early interactions between Alnus glutinosa and Frankia strain ArI3. Production and specificity of root hair deformation factor (s). Physiol Plant 99:579–587

    Article  Google Scholar 

  • Gherbi H, Markmann K, Svistoonoff S et al (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci 105:4928–4932

    Article  PubMed  Google Scholar 

  • Gherbi H, Hocher V, Ngom M et al (2018) Molecular methods for research on actinorhiza. In: Reinhardt D (ed) Rhizosphere biology research. Springer, Berlin

    Google Scholar 

  • Granqvist E, Sun J, Op den Camp R et al (2015) Bacterial-induced calcium oscillations are common to nitrogen-fixing associations of nodulating legumes and nonlegumes. New Phytol 207:551–558. https://doi.org/10.1111/nph.13464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griesmann M, Chang Y, Liu X et al (2018) Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361:eaat1743. https://doi.org/10.1126/science.aat1743

    Article  CAS  PubMed  Google Scholar 

  • Hammad Y, Nalin R, Marechal J et al (2003) A possible role for phenyl acetic acid (PAA) on Alnus glutinosa nodulation by Frankia. Plant Soil 254:193–205

    Article  CAS  Google Scholar 

  • Hocher V, Auguy F, Argout X et al (2006) Expressed sequence-tag analysis in Casuarina glauca actinorhizal nodule and root. New Phytol 169:681–688

    Article  PubMed  Google Scholar 

  • Hocher V, Alloisio N, Auguy F et al (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:700–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imanishi L, Vayssières A, Franche C et al (2011) Transformed hairy roots of Discaria trinervis: a valuable tool for studying actinorhizal symbiosis in the context of intercellular infection. Mol Plant Microbe Interact 24:1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Imanishi L, Perrine-Walker FM, Ndour A et al (2014) Role of auxin during intercellular infection of Discaria trinervis by Frankia. Front Plant Sci 5:399. https://doi.org/10.3389/fpls.2014.00399

    Article  PubMed  PubMed Central  Google Scholar 

  • Journet EP, El-Gachtouli N, Vernoud V et al (2001) Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol Plant Microbe Interact 14:737–748

    Article  CAS  Google Scholar 

  • Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume-rhizobium mutualism. Nature 425:78–81. https://doi.org/10.1038/nature01931

    Article  CAS  Google Scholar 

  • Ktari A, Gueddou A, Nouioui I et al (2017a) Host plant compatibility shapes the proteogenome of Frankia coriariae. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00720

    Article  PubMed  PubMed Central  Google Scholar 

  • Ktari A, Nouioui I, Furnholm T et al (2017b) Permanent draft genome sequence of Frankia sp. NRRL B-16219 reveals the presence of canonical nod genes, which are highly homologous to those detected in Candidatus Frankia Dg1 genome. Stand Genomic Sci 12:51. https://doi.org/10.1186/s40793-017-0261-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplaze L, Duhoux E, Franche C et al (2000a) Casuarina glauca prenodule cells display the same differentiation as the corresponding nodule cells. Mol Plant Microbe Interact 13:107–112

    Article  CAS  PubMed  Google Scholar 

  • Laplaze L, Ribeiro A, Franche C et al (2000b) Characterization of a Casuarina glauca nodule-specific subtilisin-like protease gene, a homolog of Alnus glutinosa ag12. Mol Plant Microbe Interact 13:113–117

    Article  CAS  PubMed  Google Scholar 

  • Madsen LH, Tirichine L, Jurkiewicz A et al (2010) The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun 1:10. https://doi.org/10.1038/ncomms1009

    Article  CAS  PubMed  Google Scholar 

  • Markmann K, Giczey G, Parniske M (2008) Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6:e68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh JF, Rakocevic A, Mitra RM et al (2007) Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol 144:324–335. https://doi.org/10.1104/pp.106.093021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TV, Wibberg D, Battenberg K et al (2016) An assemblage of Frankia Cluster II strains from California contains the canonical nod genes and also the sulfotransferase gene nodH. BMC Genom 17:796. https://doi.org/10.1186/s12864-016-3140-1

    Article  CAS  Google Scholar 

  • Normand P, Lapierre P, Tisa LS et al (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263. https://doi.org/10.1038/nrmicro2990

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE, Engstrom EM, Long SR (2001) Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Péret B, Swarup R, Jansen L et al (2007) Auxin influx activity is associated with Frankia infection during actinorhizal nodule formation in Casuarina glauca. Plant Physiol 144:1852–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Péret B, Svistoonoff S, Lahouze B et al (2008) A role for auxin during actinorhizal symbioses formation? Plant Signal Behav 3:34–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrine-Walker F, Doumas P, Lucas M et al (2010) Auxin carriers localization drives auxin accumulation in plant cells infected by Frankia in Casuarina glauca actinorhizal nodules. Plant Physiol 154:1372–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson T, Battenberg K, Demina IV et al (2015) Candidatus Frankia Datiscae Dg1, the actinobacterial microsymbiont of Datisca glomerata, expresses the canonical nod genes nodABC in symbiosis with its host plant. PLoS ONE 10:e0127630. https://doi.org/10.1371/journal.pone.0127630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popovici J, Comte G, Bagnarol É et al (2010) Differential effects of rare specific flavonoids on compatible and incompatible strains in the Myrica gale-Frankia actinorhizal symbiosis. Appl Environ Microbiol 76:2451–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popovici J, Walker V, Bertrand C et al (2011) Strain specificity in the Myricaceae–Frankia symbiosis is correlated to plant root phenolics. Funct Plant Biol 38:682–689

    Article  CAS  Google Scholar 

  • Prin Y, Rougier M (1987) Preinfection events in the establishment of AlnusFrankia symbiosis: study of the root hair deformation step. Plant Physiol (Life Sci Adv) 6:96–106

    Google Scholar 

  • Radutoiu S, Madsen LH, Madsen EB et al (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592

    Article  CAS  PubMed  Google Scholar 

  • Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402:191–195. https://doi.org/10.1038/46058

    Article  CAS  PubMed  Google Scholar 

  • Solans M, Vobis G, Cassán F et al (2011) Production of phytohormones by root-associated saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis. World J Microbiol Biotechnol 27:2195–2202. https://doi.org/10.1007/s11274-011-0685-7

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Morgan DR et al (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci USA 92:2647–2651

    Article  CAS  PubMed  Google Scholar 

  • Sprent JI (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol 174:11–25

    Article  CAS  PubMed  Google Scholar 

  • Streeter J, Wong PP (1988) Inhibition of legume nodule formation and N2 fixation by nitrate. Crit Rev Plant Sci 7:1–23. https://doi.org/10.1080/07352688809382257

    Article  CAS  Google Scholar 

  • Sun J, Cardoza V, Mitchell DM et al (2006) Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J Cell Mol Biol 46:961–970. https://doi.org/10.1111/j.1365-313X.2006.02751.x

    Article  CAS  Google Scholar 

  • Svistoonoff S, Laplaze L, Auguy F et al (2003) cg12 expression is specifically linked to infection of root hairs and cortical cells during Casuarina glauca and Allocasuarina verticillata actinorhizal nodule development. Mol Plant Microbe Interact 16:600–607

    Article  CAS  PubMed  Google Scholar 

  • Svistoonoff S, Laplaze L, Liang J et al (2004) Infection-related activation of the cg12 promoter is conserved between actinorhizal and legume-rhizobia root nodule symbiosis. Plant Physiol 136:3191–3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svistoonoff S, Sy MO, Diagne N et al (2010) Infection-specific activation of the Medicago truncatula Enod11 early nodulin gene promoter during actinorhizal root nodulation. Mol Plant Microbe Interact 23:740–747

    Article  CAS  PubMed  Google Scholar 

  • Svistoonoff S, Benabdoun FM, Nambiar-Veetil M et al (2013) The independent acquisition of plant root nitrogen-fixing symbiosis in fabids recruited the same genetic pathway for nodule organogenesis. PLoS ONE 8:e64515. https://doi.org/10.1371/journal.pone.0064515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svistoonoff S, Hocher V, Gherbi H (2014) Actinorhizal root nodule symbioses: what is signalling telling on the origins of nodulation? Curr Opin Plant Biol 20C:11–18. https://doi.org/10.1016/j.pbi.2014.03.001

    Article  Google Scholar 

  • Tisa LS, Oshone R, Sarkar I et al (2016) Genomic approaches toward understanding the actinorhizal symbiosis: an update on the status of the Frankia genomes. Symbiosis 70:5–16

    Article  CAS  Google Scholar 

  • Valverde C, Wall LG (2005) Ethylene modulates the susceptibility of the root for nodulation in actinorhizal Discaria trinervis. Physiol Plant 124:121–131

    Article  CAS  Google Scholar 

  • van Velzen R, Holmer R, Bu F et al (2018) Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proc Natl Acad Sci 115:E4700–E4709. https://doi.org/10.1073/pnas.1721395115

    Article  CAS  PubMed  Google Scholar 

  • Vessey KJ, Pawlowski K, Bergman B (2004) Root-based N2-fixing symbioses: legumes, actinorhizal plants, Parasponia sp. and cycads. Plant Soil 266:205–230

    Article  CAS  Google Scholar 

  • Wall LG (2000) The actinorhizal symbiosis. J Plant Growth Regul 19:167–182

    CAS  PubMed  Google Scholar 

  • Wheeler CT, Crozier A, Sandberg G (1984) The biosynthesis of indole-3-acetic acid by Frankia. Plant Soil 78:99–104

    Article  CAS  Google Scholar 

  • Zdyb A, Demchenko K, Heumann J et al (2011) Jasmonate biosynthesis in legume and actinorhizal nodules. New Phytol 189:568–579

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from IRD, CNRS (Project EC2CO), Genoscope, Genopole of Montpellier, and Agence Nationale de la Recherche (AN-06-BLAN-0095, BLAN 1708 01, 12-BSV7-0007-02) and United States Department of Agriculture (USDA NIFA 2015-67014-22849) and ECOS-SUD (A07B02 and A13B03).

Author information

Authors and Affiliations

Authors

Contributions

VH, MN, ACM, PT, HG and SS wrote the manuscript. All the authors approved the paper.

Corresponding author

Correspondence to Sergio Svistoonoff.

Ethics declarations

Conflict of interest

The authors have declared that no competing interest exists.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hocher, V., Ngom, M., Carré-Mlouka, A. et al. Signalling in actinorhizal root nodule symbioses. Antonie van Leeuwenhoek 112, 23–29 (2019). https://doi.org/10.1007/s10482-018-1182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-018-1182-x

Keywords

Navigation