Skip to main content
Log in

Paenibacillus salinicaeni sp. nov., isolated from saline silt sample

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel facultatively anaerobic bacterium, designated strain LAM0A28T, was isolated from a saline silt sample collected from the Chinese Sea of Death located in Suining city, Sichuan province, China. Cells of strain LAM0A28T were observed to be Gram-stain positive, motile, endospore-forming and straight-rod shaped. Strain LAM0A28T was found to be able to grow at 15–45 °C (optimum: 30–35 °C), pH 5.0–10.0 (optimum: 7.5) and 0–5 % NaCl (w/v) (optimum: 0.5 %). The 16S rRNA gene sequence similarity analysis showed that strain LAM0A28T is closely related to Paenibacillus jilunlii DSM 23019T (97.5 %) and Paenibacillus graminis DSM 15220T (97.2 %). The DNA–DNA hybridization values between the isolate and P. jilunlii DSM 23019T, P. graminis DSM 15220T were 30.2 ± 1.6 % and 44.7 ± 2.1 %, respectively. The DNA G+C content was found to be 51.2 mol% as determined by the T m method. The major cellular fatty acids were identified as anteiso-C15:0, C16:0, iso-C16:0 and C14:0. The major isoprenoid quinone was identified as MK-7. The cell wall peptidoglycan was found to contain meso-diaminopimelic acid. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two aminophospholipids and six unidentified lipids. Based on the phylogenetic, phenotypic and chemotaxonomic characteristics, strain LAM0A28T is concluded to represent a novel species within the genus Paenibacillus, for which the name Paenibacillus salinicaeni sp. nov. is proposed. The type strain is LAM0A28T (=ACCC 00741T = JCM 30850T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253–260

    Article  CAS  PubMed  Google Scholar 

  • Berge O, Guinebretiere MH, Achouak W, Normand P, Heulin T (2002) Paenibacillus graminis sp nov and Paenibacillus odorifer sp nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52:607–616

    Article  CAS  PubMed  Google Scholar 

  • Bryant MP (1972) Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328

    CAS  PubMed  Google Scholar 

  • Chen XR, Shao CB, Wang YW, He MX, Ma KD, Wang HM, Kong DL, Guo X, Zhou YQ, Ruan ZY (2015) Paenibacillus vini sp. nov., isolated from alcohol fermentation pit mud in Sichuan Province, China. Anton Leeuw Int J G 107:1429–1436

    Article  CAS  Google Scholar 

  • Choi JH, Im WT, Yoo JS, Lee SM, Moon DS, Kim HJ, Rhee SK, Roh DH (2008) Paenibacillus donghaensis sp nov., a xylan-degrading and nitrogen-fixing bacterium isolated from East Sea sediment. J Microbiol Biotechn 18(2):189–193

    CAS  Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  • Fang MX, Zhang WW, Zhang YZ, Tan HQ, Zhang XQ, Wu M, Zhu XF (2012) Brassicibacter mesophilus gen. nov., sp. nov., a strictly anaerobic bacterium isolated from food industry wastewater. Int J Syst Evol Microbiol 62:3018–3023

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Han TY, Tong XM, Wang YW, Wang HM, Chen XR, Kong DL, Guo X, Ruan ZY (2015) Paenibacillus populi sp. nov., a novel bacterium isolated from the rhizosphere of Populus alba. Anton Leeuw Int J G 108:659–666

    Article  CAS  Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons RW (eds) Methodsin microbiology, vol 3B. Academic Press, London, pp 117–132

    Google Scholar 

  • Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  CAS  PubMed  Google Scholar 

  • Jin HJ, Zhou YG, Liu HC, Chen SF (2011) Paenibacillus jilunlii sp nov., a nitrogen-fixing species isolated from the rhizosphere of Begonia semperflorens. Int J Syst Evol Micr 61:1350–1355

    Article  Google Scholar 

  • Kates M (1986) Techniques of lipidology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    Article  CAS  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW, Fairfax VA (eds) Actinomycete taxonomy, society for industrial microbiology. SIM Special Publication, Utrecht, pp 227–291

    Google Scholar 

  • Li YF, Calley JN, Ebert PJ, Helmes EB (2014) Paenibacillus lentus sp nov., a beta-mannanolytic bacterium isolated from mixed soil samples in a selective enrichment using guar gum as the sole carbon source. Int J Syst Evol Microbiol 64:1166–1172

    Article  CAS  PubMed  Google Scholar 

  • Logan NA, Berge O, Bishop AH, Busse HL, Vos PD, Fritze D, Heyndrickx M, Kämper P, Rabinovitch L, Salkinoja-Salonen MS, Seldin L, Ventosa A (2009) Proposed minimal standards for describing new taxa of aerobic, endospore- forming bacteria. Int J Syst Evol Microbiol 59:2114–2121

    Article  CAS  PubMed  Google Scholar 

  • Ludwig W, Schleifer KH, Whitman WB (2009) Family IV. Paenibacillaceae fam. nov. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey F, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, p 269

    Google Scholar 

  • Mandel M, Marmur J (1968) Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12:195–206

    Article  CAS  Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    Article  CAS  PubMed  Google Scholar 

  • Miller TL, Wolin MJ (1974) A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minnikin DE, Odonnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Osman S, Satomi M, Venkateswaran K (2006) Paenibacillus pasadenensis sp. nov. and Paenibacillus barengoltzii sp. nov., isolated from a spacecraft assembly facility. Int J Syst Evol Microbiol 56:1509–1514

    Article  CAS  PubMed  Google Scholar 

  • Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103

    Article  CAS  PubMed  Google Scholar 

  • Priest FG (1994) Genus I. Paenibacillus Ash, Priest and Collins 1994, 852VP. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 269–295

    Google Scholar 

  • Ruan Z, Wang Y, Song J, Jiang S, Wang H, Li Y, Zhao B, Jiang R, Zhao B (2014) Kurthia huakuii sp. nov., isolated from biogas slurry, and emended description of the genus Kurthia. Int J Syst Evol Microbiol 64:518–521

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sakamoto M, Suzuki M, Umeda M, Ishikawa I, Benno Y (2002) Reclassification of bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb.Nov. Int J Syst Evol Microbiol 52:841–884

    CAS  PubMed  Google Scholar 

  • Schleifer KH (1985) Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156

    Article  CAS  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Soc Microbiol, Washington, DC, pp 607–654

    Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie JB, Zhang LH, Zhou YG, Liu HC, Chen SF (2012) Paenibacillus taohuashanense sp nov., a nitrogen-fixing species isolated from rhizosphere soil of the root of Caragana kansuensis Pojark. Anton Leeuw Int J Gen 102(4):735–741

    Article  CAS  Google Scholar 

  • Xu XW, Huo YY, Wang CS, Oren A, Cui HL, Vedler E, Wu M (2011) Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae. Int J Syst Evol Microbiol 61:1817–1822

    Article  CAS  PubMed  Google Scholar 

  • Yao R, Wang R, Wang D, Su J, Zheng SX, Wang G (2014) Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int J Syst Evol Microbiol 64:805–811

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Aharon Oren from The Hebrew University of Jerusalem for assistance with Latin in deriving the specific epithet for the strain LAM0A28. This work was supported by Foundation of the Key Laboratory of Development and Application of Rural Renewable Energy (MOA, China) (No. 201502), National Nonprofit Institute Research Grant of CAAS (No. 2014-30), National Key Technology R&D Program of China (No. 2013BAD05B04F02) and National Infrastructure of Microbial Resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Quan Hu or Zhi-Yong Ruan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 484 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Zhou, S., Wang, YW. et al. Paenibacillus salinicaeni sp. nov., isolated from saline silt sample. Antonie van Leeuwenhoek 109, 721–728 (2016). https://doi.org/10.1007/s10482-016-0674-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0674-9

Keywords

Navigation