Skip to main content

Advertisement

Log in

High mycobacterial diversity in recreational lakes

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Although nontuberculous mycobacteria (NTM) are natural inhabitants of freshwater ecosystems, few studies have focused on their distribution in these habitats. Thus, the knowledge about the abundance as well as the composition of NTM remains limited and patchy in these environments. In this context, a prospective study was performed to identify favourable habitats for mycobacteria in two recreational lakes. Mycobacterial density and diversity were measured using quantitative real-time PCR and the MiSeq Illumina platform. For both lakes, five compartments were investigated, i.e. water column, air–water interface, sediment, epilithon and epiphyton biofilms. Nontuberculous mycobacteria were detected in all compartments in large densities and displayed a remarkable diversity. NTM were dominated by fast-growing species. Lakes and compartments appeared to shape mycobacteria assemblage composition as well as their densities. In both lakes, some OTUs assigned to the species level were identified as related to known opportunistic pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adékambi T, Drancourt M (2004) Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. Int J Syst Evol Microbiol 54:2095–2105

    Article  PubMed  Google Scholar 

  • Adiba S, Nizak C, van Baalen M, Denamur E, Depaulis F (2010) From grazing resistance to pathogenesis: the coincidental evolution of virulence factors. PLoS ONE 5:e11882

    Article  PubMed  PubMed Central  Google Scholar 

  • Agogué H, Casamayor EO, Joux F, Obernosterer I, Dupuy C, Lantoine F et al (2004) Comparison of samplers for the biological characterization of the sea surface microlayer. Limnol Oceanogr Methods 2:213–225

    Article  Google Scholar 

  • Alavi MR, Shukla HD, Whitaker B, Arnold J, Shahamat M (2006) Attachment and biofilm formation of Mycobacterium marinum on a hydrophobic surface at the air interface. World J Microbiol Biotechnol 23:93–101

    Article  Google Scholar 

  • Azeria ET, Ibarzabal J, Boucher J, Hérbert C (2011) Towards a better understanding of beta diversity: deconstructing composition patterns of saproxylic beetles breeding in recently burnt boreal forests. Res Biodivers Model Appl, pp 75–94

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogrogr 19:134–143

    Article  Google Scholar 

  • Baselga A, Orme D, Villeger S, de Bortoli J, Leprieur F (2013) Package “betapart”. Partitioning beta diversity into turnover and nestedness components, version 1.3

  • Bercovier H, Kafri O, Sela S (1986) Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem Biophys Res Commun 136:1136–1141

    Article  CAS  PubMed  Google Scholar 

  • Blanchard DC (1964) Sea-to-air transport of surface active material. Science 146:396–397

    Article  CAS  PubMed  Google Scholar 

  • Bland CS, Ireland JM, Lozano E, Alvarez ME, Primm TP (2005) Mycobacterial ecology of the Rio Grande. Appl Environ Microbiol 71:5719–5727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks RW, George KL, Parker BC, Falkinham JO III, Gruff H (1984) Recovery and survival of nontuberculous mycobacteria under various growth and decontamination conditions. Can J Microbiol 30:1112–1117

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791

    Article  CAS  PubMed  Google Scholar 

  • Cincinelli A, Stortini AM, Perugini M, Checchini L, Lepri L (2001) Organic pollutants in sea-surface microlayer and aerosol in the coastal environment of Leghorn—(Tyrrhenian Sea). Mar Chem 76:77–98

    Article  CAS  Google Scholar 

  • Collins CH, Grange JM, Yates MD (1984) Mycobacteria in water. J Appl Bacteriol 57:193–211

    Article  CAS  PubMed  Google Scholar 

  • Covert TC, Rodgers MR, Reyes AL, Stelma GN (1999) Occurrence of nontuberculous mycobacteria in environmental samples. Appl Environ Microbiol 65:2492–2496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dailloux M, Alber M, Laurain C, Andolfatto S, Lozniewski A, Hartemann P et al (2003) Mycobacterium xenopi and drinking water biofilms. Appl Environ Microbiol 69:6946–6948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danilov RA, Ekelund NGA (2000) The use of epiphyton and epilithon data as a base for calculating ecological indices in monitoring of eutrophication in lakes in central Sweden. Sci Total Environ 248:63–70

    Article  CAS  PubMed  Google Scholar 

  • Debruyn JM, Mead TJ, Wilhelm SW, Sayler GS (2009) PAH biodegradative genotypes in Lake Erie sediments: evidence for broad geographical distribution of pyrene-degrading mycobacteria. Environ Sci Technol 43:3467–3473

    Article  CAS  PubMed  Google Scholar 

  • Delafont V, Mougari F, Cambau E, Joyeux M, Bouchon D, Yann H et al (2014) First evidence of Amoebae—Mycobacteria association in drinking water network. Environ Sci Technol 48:11872–11882

    Article  CAS  PubMed  Google Scholar 

  • Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, Raoult D (2000) 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 38:3623–3630

    CAS  PubMed  PubMed Central  Google Scholar 

  • du Moulin G, Stottmeier K, Pelletier P, Tsang A, Hedley-Whyte J (1988) Concentration of Mycobacterium avium by hospital hot water systems. JAMA 260:1599–1601

    Article  PubMed  Google Scholar 

  • Dubrou S, Konjek J, Macheras E, Welté B, Guidicelli L, Chignon E et al (2013) Diversity, community composition, and dynamics of nonpigmented and late-pigmenting rapidly growing mycobacteria in an urban tap water production and distribution system. Appl Environ Microbiol 79:1–12

    Article  Google Scholar 

  • Dyble J, Bienfang P, Dusek E, Hitchcock G, Holland F, Laws E et al (2008) Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure. Environ Health 7(Suppl 2):S5

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel H, Berwald L (1980) The occurence of Mycobacterium kansasii in tapwater. Tubercle 61:21–26

    Article  CAS  PubMed  Google Scholar 

  • Euzéby JP (1997) List of bacterial names standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 47:590–592. (Accessed on August 2015, http://www.bacterio.net/)

  • Falkinham JO III (2002) Nontuberculous mycobacteria in the environment. Clin Chest Med 23:529–551

    Article  PubMed  Google Scholar 

  • Falkinham JO III, Norton CD, LeChevalier MW (2001) Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl Environ Microbiol 67:1225–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox GE, Wisotzkey JD, Jurtshuk P (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170

    Article  CAS  PubMed  Google Scholar 

  • Fujita J, Nanki N, Negayama K, Tsutsui S, Taminato T, Ishida T (2002) Nosocomial contamination by Mycobacterium gordonae in hospital water supply and super-oxidized water. J Hosp Infect 51:65–68

    Article  PubMed  Google Scholar 

  • Gauthier DT, Reece KS, Xiao J, Rhodes MW, Kator HI, Latour RJ et al (2010) Quantitative PCR assay for Mycobacterium pseudoshottsii and Mycobacterium shottsii and application to environmental samples and fishes from the Chesapeake Bay. Appl Environ Microbiol 76:6171–6179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F et al (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175:367–416

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Zhang T (2013) Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing. Appl Microbiol Biotechnol 97:4607–4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall-Stoodley L, Lappin-Scott H (1998) Biofilm formation by the rapidly growing mycobacterial species Mycobacterium fortuitum. FEMS Microbiol Lett 168:77–84

    Article  CAS  PubMed  Google Scholar 

  • Hempel M, Blume M, Blindow I, Gross EM (2008) Epiphytic bacterial community composition on two common submerged macrophytes in brackish water and freshwater. BMC Microbiol 8:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Hempel M, Grossart HP, Gross EM (2009) Community composition of bacterial biofilms on two submerged macrophytes and an artificial substrate in a pre-alpine Lake. Aquat Microb Ecol 58:79–94

    Article  Google Scholar 

  • Hruska K, Kaevska M (2012) Mycobacteria in water, soil, plants and air: a review. Vet Med 57:623–679

    Google Scholar 

  • Hussein Z, Landt O, Wirths B, Wellinghausen N (2009) Detection of non-tuberculous mycobacteria in hospital water by culture and molecular methods. Int J Med Microbiol 299:281–290

    Article  CAS  PubMed  Google Scholar 

  • Iivanainen EK, Martikainen PJ, Väänänen PK, Katila ML (1993) Environmental factors affecting the occurrence of mycobacteria in brook waters. Appl Environ Microbiol 59:398–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs J, Rhodes M, Sturgis B, Wood B (2009) Influence of environmental gradients on the abundance and distribution of Mycobacterium spp. in a coastal lagoon estuary. Appl Environ Microbiol 75:7378–7384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoch VM (2004) Infections due to non-tuberculous mycobacteria (NTM). Indian J Med Res 120:290–304

    CAS  PubMed  Google Scholar 

  • Kazda J, Pavlik I, Falkinham JO III, Hruska K (1999) The ecology of mycobacteria: impact on animal’s and human’s health. Springer Science and Business Media, New York

    Google Scholar 

  • Khera TT (2012) The diversity and distribution of Mycobacterium species in varying ecological and climatic environments. Doctoral dissertation, University of Warwick

  • Kim H, Kim S-H, Shim T-S, Kim M, Bai G-H, Park Y-G et al (2005) Differentiation of Mycobacterium species by analysis of the heat-shock protein 65 gene (hsp65). Int J Syst Evol Microbiol 55:1649–1656

    Article  CAS  PubMed  Google Scholar 

  • Kirschner RA, Parker BC, Falkinham JO III (1992) Epidemiology of infection by nontuberculous mycobacteria. Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum in acid, brown-water swamps of southeastern United States and their association with environmental variables. Am Rev Respir Dis 145:271–275

    Article  PubMed  Google Scholar 

  • Klanicova B, Seda J, Slana I, Slany M, Pavlik I (2013) The tracing of mycobacteria in drinking water supply systems by culture, conventional, and real time PCRs. Curr Microbiol 67:725–731

    Article  CAS  PubMed  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Leys NM, Ryngaert A, Bastiaens L, Wattiau P, Top EM, Verstraete W et al (2005) Occurrence and community composition of fast-growing Mycobacterium in soils contaminated with polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 51:375–388

    Article  CAS  PubMed  Google Scholar 

  • Manodori L, Gambaro A, Piazza R, Ferrari S, Stortini AM, Moret I et al (2006) PCBs and PAHs in sea-surface microlayer and sub-surface water samples of the Venice Lagoon (Italy). Mar Pollut Bull 52:184–192

    Article  CAS  PubMed  Google Scholar 

  • Marsollier L, Robert R, Aubry J, Saint Andre JP, Kouakou H, Legras P et al (2002) Aquatic insects as a vector for Mycobacterium ulcerans. Appl Environ Microbiol 68:4623–4628

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA (2008) Database indexing for production MegaBLAST searches. Bioinformatics 24:1757–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mrlik V, Slany M, Kubecka J, Seda J, Necas A, Babak V et al (2012) A low prevalence of mycobacteria in freshwater fish from water reservoirs, ponds and farms. J Fish Dis 35:497–504

    Article  CAS  PubMed  Google Scholar 

  • Narang R, Narang P, Mendiratta DK (2009) Isolation and identification of nontuberculous mycobacteria from water and soil in central India. Indian J Med Microbiol 27:247–250

    Article  CAS  PubMed  Google Scholar 

  • Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niva M, Hernesmaa A, Haahtela K, Salkinoja-Salonen M, Sivonen K, Haukka K (2006) Actinobacterial communities of boreal forest soil and lake water are rich in mycobacteria. Boreal Environ Res 11:45–53

    Google Scholar 

  • Oksanen J, Blanchet G, Kindt R, Legendre P, Minchin P, O’Hara R, et al (2013) Package “vegan”. Community ecology package, version, 2(9)

  • Parashar D, Das R, Chauhan DS, Sharma VD, Lavania M, Yadav VS et al (2009) Identification of environmental mycobacteria isolated from Agra, north India by conventional and molecular approaches. Indian J Med Res 129:424–431

    CAS  PubMed  Google Scholar 

  • Parker BC, Ford MA, Gruft H, Falkinham JO III (1983) Epidemiology of infection by nontuberculous mycobacteria: IV. Preferential aerosolization of Mycobacterium intracellulare from natural waters. Am Rev Respir Dis 128:652–656

    CAS  PubMed  Google Scholar 

  • Pickup RW, Rhodes G, Arnott S, Bull TJ, Weightman A, Hurley M et al (2005) Mycobacterium avium subsp. paratuberculosis in the catchment area and water of the river taff in South Wales, United Kingdom, and its potential relationship to clustering of Crohn’ s disease cases in the city of Cardiff. Appl Environ Microbiol 71:2130–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickup RW, Rhodes G, Bull TJ, Arnott S, Sidi-Boumedine K, Hurley M et al (2006) Mycobacterium avium subsp. paratuberculosis in lake catchments, in river water abstracted for domestic use, and in effluent from domestic sewage treatment works: diverse opportunities for environmental cycling and human exposure. Appl Environ Microbiol 72:4067–4077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontiroli A, Khera TT, Oakley BB, Mason S, Dowd SE, Travis ER et al (2013) Prospecting environmental mycobacteria: combined molecular approaches reveal unprecedented diversity. PLoS ONE 8:e68648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596

    Article  Google Scholar 

  • R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Radomski N, Roguet A, Lucas FS, Veyrier FJ, Cambau E, Accrombessi H et al (2013) atpE gene as a new useful specific molecular target to quantify Mycobacterium in environmental samples. BMC Microbiol 13:277

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith B, Wilson JB (1996) A consumer’s guide to evenness indices. Oikos 76:70–82

    Article  Google Scholar 

  • Steinman AD, Lamberti GA, Leavitt PR (2006) Biomass and pigments of benthic algae. Methods Stream Ecol 1:295–313

    Google Scholar 

  • Stinear T, Davies JK, Jenkin GA, Hayman JA, Oppedisano F, Johnson PDR (2000) Identification of Mycobacterium ulcerans in the environment from regions in Southeast Australia in which it is endemic with sequence capture-PCR. Appl Environ Microbiol 66:3206–3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tortoli E (2009) Clinical manifestations of nontuberculous mycobacteria infections. Clin Microbiol Infect 15:906–910

    Article  CAS  PubMed  Google Scholar 

  • Tsukamura M, Yano I, Imaeda T (1986) Mycobacterium moriokaense sp. nov., a rapidly growing, nonphotochromogenic Mycobacterium. Int J Syst Bacteriol 36:333–338

    Article  Google Scholar 

  • Uyttebroek M, Breugelmans P, Janssen M, Wattiau P, Joffe B, Karlson U et al (2006) Distribution of the Mycobacterium community and polycyclic aromatic hydrocarbons (PAHs) among different size fractions of a long-term PAH-contaminated soil. Environ Microbiol 8:836–847

    Article  CAS  PubMed  Google Scholar 

  • Vaerewijck MJM, Huys G, Palomino JC, Swings J, Portaels F (2005) Mycobacteria in drinking water distribution systems: ecology and significance for human health. FEMS Microbiol Rev 29:911–934

    Article  CAS  PubMed  Google Scholar 

  • van der Wielen PWJJ, Heijnen L, van der Kooij D (2013) Pyrosequence analysis of the hsp65 genes of nontuberculous mycobacterium communities in unchlorinated drinking water in the Netherlands. Appl Environ Microbiol 79:6160–6166

    Article  PubMed  PubMed Central  Google Scholar 

  • Viallier J, Viallier G (1973) Inventaire des mycobacteries de la nature. Ann Soc Belg Med Trop 53:361–371

    CAS  PubMed  Google Scholar 

  • Walenciak O, Zwisler W, Gross EM (2002) Influence of Myriophyllum spicatum -derived tannins on gut microbiota of its herbivore Acentria ephemerella. J Chem Ecol 28:2045–2056

    Article  CAS  PubMed  Google Scholar 

  • Wick LY, Pasche N, Bernasconi SM, Pelz O, Harms H (2003) Characterization of multiple-substrate utilization by anthracene-degrading Mycobacterium frederiksbergense LB501T. Appl Environ Microbiol 69:6133–6142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams MM, Yakrus MA, Arduino MJ, Cooksey RC, Crane CB, Banerjee SN et al (2009) Structural analysis of biofilm formation by rapidly and slowly growing nontuberculous mycobacteria. Appl Environ Microbiol 75:2091–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willumsen P, Karlson U, Stackebrandt E, Kroppenstedt RM (2001) Mycobacterium frederiksbergense sp. nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. Int J Syst Evol Microbiol 51:1715–1722

    Article  CAS  PubMed  Google Scholar 

  • Wurl O, Obbard JP (2004) A review of pollutants in the sea-surface microlayer (SML): a unique habitat for marine organisms. Mar Pollut Bull 48:1016–1030

    Article  CAS  PubMed  Google Scholar 

  • Wurtzer S, Prevost B, Lucas FS, Moulin L (2014) Detection of enterovirus in environmental waters: a new optimized method compared to commercial real-time RT-qPCR kits. J Virol Methods 209:47–54

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the French National Research Agency through the Pulse (peri-urban lakes, society and environment) research project [ANR-10-CEPL-010] and by Eau de Paris. The authors are grateful to the Créteil leisure base and the Green Space and Environment Department of Paris for their authorization to collect samples in both lakes and for lending their boats. We also thank Fabien Joux for showing us how to use and manufacture the metal screen, Sylvain Huon, Cécile Bernard and Brigitte Vinçon-Leite for respectively lending us the corer, the fluoroprobe and the submersive data logger. Finally, we warmly thank Gérard Lacroix for sediment C/N ratio analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Roguet.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roguet, A., Therial, C., Saad, M. et al. High mycobacterial diversity in recreational lakes. Antonie van Leeuwenhoek 109, 619–631 (2016). https://doi.org/10.1007/s10482-016-0665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0665-x

Keywords

Navigation