Skip to main content
Log in

Comparative expression profiling of genes involved in primary metabolism in high-yield and wild-type strains of Acremonium chrysogenum

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Cephalosporin C (CPC) productivity of Acremonium chrysogenum has been improved significantly through classical strain improvement programs. Here, we used transcription and metabolite profiling to address mechanisms underlying CPC production in a high yield (HY) strain. Transcription and metabolite profiling indicated that enzymes involved in amino acid production are higher in abundance in the HY strain. Moreover, results indicate a higher flow of precursors from the glycolysis and gluconeogenesis pathways to serine synthesis at the late stage of fermentation in the HY strain. In addition, less pyruvate would enter the TCA cycle thus favoring valine synthesis. Amino acid production would also benefit from a more active pentose phosphate pathway and γ-amino butyric acid shunt both generating NADPH. Moreover the glyoxylate pathway seems to be more active in the HY strain. These results may provide new leads for CPC strain improvement in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cao J, Barbosa JM, Singh NK, Locy RD (2013) GABA shunt mediates thermotolerance in Saccharomyces cerevisiae by reducing reactive oxygen production. Yeast 30:129–144

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary AK, Dhakal D, Sohng JK (2013) An insight into the "-Omics" based engineering of Streptomycetes for secondary metabolite overproduction. Biomed Res Int 13:1–15

    Article  CAS  Google Scholar 

  • Demain AL (1983) Biosynthesis ofβ-lactam antibiotics. In: Demain AL, Solomon NA (eds) Antibiotics containing the β-lactam structure. Springer-Verlag, New York, pp 189–228

    Google Scholar 

  • Demain AL, Zhang J (1998) Cephalosporin C production by Cephalosporium acremonium: the methionine story. Crit Rev Biotechnol 18:283–294

    Article  CAS  PubMed  Google Scholar 

  • Drew SW, Demain AL (1975) Production of cephalosporin C by single and double sulfur auxotrophic mutants of Cephalosporium acremonium. Antimicrob Agents Chemother 8:5–10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gunnarsson N, Eliasson A, Nielsen J (2004) Control of fluxes towards antibiotics and the role of primary metabolism in production of antibiotics. Adv Biochem Engin/Biotechnol 88:137–178

    Article  CAS  Google Scholar 

  • Hijarrubia MJ, Aparicio JF, Martin JF (2002) Nitrate regulation of alpha-aminoadipate reductase formation and lysine inhibition of its activity in Penicillium chrysogenum and Acremonium chrysogenum. Appl Microbiol Biotechnol 59:270–277

    Article  CAS  PubMed  Google Scholar 

  • Karaffa L, Sandor E, Kozma J, Kubicek CP, Szentirmai A (1999) The role of the alternative respiratory pathway in the stimulation of cephalosporin C formation by soybean oil in Acremonium chrysogenum. Appl Microbiol Biotechnol 51:633–638

    Article  CAS  PubMed  Google Scholar 

  • Karaffa L, Sandor E, Fekete E, Kozma J, Szentirmai A, Pocsi I (2003) Stimulation of the cyanide-resistant alternative respiratory pathway by oxygen in Acremonium chrysogenum correlates with the size of the intracellular peroxide pool. Can J Microbiol 49:216–220

    Article  CAS  PubMed  Google Scholar 

  • Kern A, Tilley E, Hunter IS, Legisa M, Glieder A (2007) Engineering primary metabolic pathways of industrial micro-organisms. J Biotechnol 129:6–29

    Article  CAS  PubMed  Google Scholar 

  • Kleijn RJ, van Winden WA, Ras C, van Gulik WM, Schipper D, Heijnen JJ (2006) 13C-labeled gluconate tracing as a direct and accurate method for determining the pentose phosphate pathway split ration in Penicillium chrysogenum. Appl Environ Biotechnol 72:4743–4754

    CAS  Google Scholar 

  • Kozma J, Karaffa L (1996) Effect of oxygen on the respiratory system and cephalosporin-C production in Acremonium chrysogenum. J Biotechnol 48:59–66

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yang Y, Chu J, Huang M, Li L, Zhang X et al (2010) Quantitative metabolic flux analysis revealed uneconomical utilization of ATP and NADPH in Acremonium chrysogenum fed with soybean oil. Bioprocess Biosyst Eng 33:1119–1129

    Article  CAS  PubMed  Google Scholar 

  • Litzka O, Bergh KT, Brulle JV, Steidl S, Brakhage AA (1999) Transcriptional control of expression of fungal ß-lactam biosynthesis genes. Antonie Van Leeuwenhoek 75:95–105

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Gong G, Xie L, Yuan N, Zhu C et al (2010) Improvement of cephalosporin C production by recombinant DNA integration in Acremonium chrysogenum. Mol Biotechnol 44:101–109

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Xie L, Gong G, Zhang W, Zhu B, Hu Y (2014) De novo comparative transcriptome analysis of Acremonium chrysogenum: high-yield and wild-type strains of cephalosporin C producer. PLoS ONE 9:1–13

    Google Scholar 

  • Martín JF, Demain AL (2002) Unraveling the methionine-cephalosporin puzzle in Acremonium chrysogenum. Trends Biotechnol 20:502–507

    Article  PubMed  Google Scholar 

  • Nasution U, van Gulik WM, Ras C, Proell A, Heijnen JJ (2008) A metabolome study of the steady-state relation between central metabolism, amino acid biosynthesis and penicillin production in Penicillium chrysogenum. Metab Eng 10:10–23

    Article  CAS  PubMed  Google Scholar 

  • Nelson DL, Cox MM (2008) Lehninger Principles of Biochemistry, 5th edn. W. H. Freeman and Company, New York

    Google Scholar 

  • Nielsen J, Jorgensen H (1995) Metabolic control analysis of the penicillin biosynthesis pathway in a high-yielding strain of P. chrysogenum. Biotechnol Prog 11:299–305

    Article  CAS  PubMed  Google Scholar 

  • Novodvorska M, Hayer K, Pullan ST, Wilson R, Blythe MJ, Stam H et al (2013) Trancriptional landscape of Aspergillus niger at breaking of conidial dormancy revealed by RNA-sequencing. BMC Genom 14:1–18

    Article  Google Scholar 

  • Schmitt EK, Hoff B, Kück U (2004) Regulation of cephalosporin biosynthesis. Adv Biochem Engin/Biotechnol 88:1–43

    Article  CAS  Google Scholar 

  • Telesnina GN, Bartoshevish YE, Krakhmaleva IN, Petyushenko RM, Sazykin YO, Navashin SM (1990) Bioenergetic parameters of Acremonium chrysogenum. J Basic Microbiol 30:273–278

    Article  CAS  Google Scholar 

  • Terfehr D, Dahlmann TA, Specht T, Zadra I, Kürnsteiner H, Kück U (2014) Genome sequence and annotation of Acremonium chrysogenum, producer of the beta-Lactam antibiotic cephalosporin C. Genome Announc 2:1–2

    Article  Google Scholar 

  • van Gulik WM, De Laat WTAM, Vinke JL, Heijnen JJ (2000) Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol Bioeng 68:602–618

    Article  PubMed  Google Scholar 

  • Xu H, Andi B, Qian J, West AH, Cook PF (2006) The α-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem Biophys 46:43–64

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Lu H, Ding MZ, Jiang J, Chen Y, Yuan YJ (2012) Comparative analysis of intracellular metabolites of Cephalosporium acremonium in pilot and industrial fermentation processes. Biotechnol Appl Biochem 59:228–237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministry of Science and Technology of the People’s Republic of China (Grant No: 2011ZX09203-001-06) and Shanghai Municipal Science and Technology Commission (Grant No: 13431900204 and 11ZR1435200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjia Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Liu, Y., Xie, L. et al. Comparative expression profiling of genes involved in primary metabolism in high-yield and wild-type strains of Acremonium chrysogenum . Antonie van Leeuwenhoek 109, 357–369 (2016). https://doi.org/10.1007/s10482-015-0638-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0638-5

Keywords

Navigation