Skip to main content
Log in

Improvement of Cephalosporin C Production by Recombinant DNA Integration in Acremonium chrysogenum

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Cephalosporins are widely used as anti-infectious β-lactam antibiotics in clinic. For the purpose of increasing the yield of cephalosporin C (CPC) fermentation, especially in an industrial strain, A. chrysogenum genes cefEF and cefG, which encode the ultimate and penultimate steps in CPC biosynthesis, cefT, which encodes a CPC efflux pump, and vgb, which encodes a bacterial hemoglobin gene were transformed in various combinations into an industrial strain of A. chrysogenum. Both PCR and Southern blotting indicated that the introduced genes were integrated into the chromosome of A. chrysogenum. Carbon monoxide difference spectrum absorbance assay was performed and the result showed that Vitreoscilla hemoglobin was successfully expressed in A. chrysogenum and had biological activity. HPLC analysis of fermentation broth of recombinant A. chrysogenum showed that most transformants had a higher CPC production level than the parental strain. Multiple transformants containing an additional copy of cefG showed a significant increase in CPC production. However, cefT showed little effect on CPC production in this high producer. The highest improvement of CPC titer was observed in the mutant with an extra copy of cefG + cefEF + vgb whose CPC production was increased by 116.3%. This was the first report that three or more genes were introduced simultaneously into A. chrysogenum. Our results also demonstrated that the combination of these genes had a synergy effect in a CPC high producer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gutierrez, S., Diez, B., Montenegro, E., & Martin, J. F. (1991). Characterization of the Cephalosporium acremonium pcbAB gene encoding alpha-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains. Journal of Bacteriology, 173, 2354–2365.

    CAS  Google Scholar 

  2. Samsom, S., Belagaje, R., Blankenship, D., Chapman, J., Perry, D., Skatrud, P., et al. (1985). Isolation, sequence determination and expression in Escherichia coli of the isopenicillin N synthetase gene from Cephalosporium acremonium. Nature, 318, 191–194.

    Article  Google Scholar 

  3. Ullan, R. V., Casqueiro, J., Banuelos, O., Fernandez, F. J., Gutierrez, S., & Martin, J. F. (2002). A novel epimerization system in fungal secondary metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum. Journal of Biological Chemistry, 277, 46216–46225.

    Article  CAS  Google Scholar 

  4. Martin, J. F., Ullan, R. V., & Casqueiro, J. (2004). Novel genes involved in cephalosporin biosynthesis: the three-component isopenicillin N epimerase system. Advances in Biochemical Engineering/Biotechnology, 88, 91–109.

    CAS  Google Scholar 

  5. Samsom, S., Dotzlaf, J., Slisz, M., Becker, G., Van Frank, R., Veal, L., et al. (1987). Cloning and expression of the fungal expandase/hydroxylase gene involved in cephalosporin biosynthesis. Bio/Technology, 5, 1207–1214.

    Article  Google Scholar 

  6. Gutierrez, S., Velasco, J., Fernandez, F. J., & Martin, J. F. (1992). The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O-acetyltransferase. Journal of Bacteriology, 174, 3056–3064.

    CAS  Google Scholar 

  7. Dotzlaf, J. E., & Yeh, W. K. (1987). Copurification and characterization of deacetoxycephalosporin C synthetase/hydroxylase from Cephalosporium acremonium. Journal of Bacteriology, 169, 1611–1618.

    CAS  Google Scholar 

  8. Velasco, J., Gutierrez, S., Campoy, S., & Martin, J. F. (1999). Molecular characterization of the Acremonium chrysogenum cefG gene product: the native deacetylcephalosporin C acetyltransferase is not processed into subunits. Biochemical Journal, 337(Pt 3), 379–385.

    Article  CAS  Google Scholar 

  9. Ullan, R. V., Liu, G., Casqueiro, J., Gutierrez, S., Banuelos, O., & Martin, J. F. (2002). The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet Genomics, 267, 673–683.

    Article  CAS  Google Scholar 

  10. Skatrud, P., Tietz, A., Ingolia, T., Cantwell, C., Fisher, D., Chapman, J., et al. (1989). Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium. Bio/Technology, 7, 477–485.

    Article  CAS  Google Scholar 

  11. Gutierrez, S., Velasco, J., Marcos, A. T., Fernandez, F. J., Fierro, F., Barredo, J. L., et al. (1997). Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum. Applied Microbiology and Biotechnology, 48, 606–614.

    Article  CAS  Google Scholar 

  12. DeModena, J. A., Gutierrez, S., Velasco, J., Fernandez, F. J., Fachini, R. A., Galazzo, J. L., et al. (1993). The production of cephalosporin C by Acremonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin. Bio/Technology, 11, 926–929.

    Article  CAS  Google Scholar 

  13. Xu, W. Zhu, C.-B. Zhu, B.-Q.and Yao, X.-S. (2004) A new method for isolation of chromosomal DNA from filamentous fungus Cephalosporium acremonium. Journal of Shenyang Pharmaceutical University, 21, 226–229, 236.

  14. Skatrud, P. L., Queener, S. W., Carr, L. G., & Fisher, D. L. (1987). Efficient integrative transformation of Cephalosporium acremonium. Current Genetics, 12, 337–348.

    Article  CAS  Google Scholar 

  15. Peterson, E. S., Huang, S., Wang, J., Miller, L. M., Vidugiris, G., Kloek, A. P., et al. (1997). A comparison of functional and structural consequences of the tyrosine B10 and glutamine E7 motifs in two invertebrate hemoglobins (Ascaris suum and Lucina pectinata). Biochemistry, 36, 13110–13121.

    Article  CAS  Google Scholar 

  16. Zhang, P.-Y., Zhu, C.-B., & Zhu, B.-Q. (2004). Cloning of bidirectional pcbAB-pcbC promoter region from Cephalosporium acremonium and its application. Acta Microbiologica Sinica, 44, 255–257.

    CAS  Google Scholar 

  17. Chen, D., Yuan, N., Hu, Y.-J., Zhu, C.-B., Zhao, W.-J., & Zhu, B.-Q. (2006). Cloning, expression and activity analysis of DAC-acetyltransferase gene from Acremonium chrysogenum. Chinese Journal of Antibiotics, 31, 395–399.

    CAS  Google Scholar 

  18. Meyer, V., Mueller, D., Strowig, T., & Stahl, U. (2003). Comparison of different transformation methods for Aspergillus giganteus. Current Genetics, 43, 371–377.

    Article  CAS  Google Scholar 

  19. Ellaiah, P., Adinarayana, K., Chand, G. M., Subramanyam, G. S., & Srinivasulu, B. (2002). Strain improvement studies for cephalosporin C production by Cephalosporium acremonium. Pharmazie, 57, 489–490.

    CAS  Google Scholar 

  20. Ellaiah, P., Kumar, J. P., Saisha, V., Sumitra, J. J., & Vaishali, P. (2003). Strain improvement studies on production of cephalosporin C from Acremonium chrysogenum ATCC 48272. Hindustan Antibiot Bull, 45–46, 11–15.

    Google Scholar 

  21. Lee, M. S., Lim, J. S., Kim, C. H., Oh, K. K., Yang, D. R., & Kim, S. W. (2001). Enhancement of cephalosporin C production by cultivation of Cephalosporium acremonium M25 using a mixture of inocula. Letters in Applied Microbiology, 32, 402–406.

    Article  CAS  Google Scholar 

  22. Matsuda, A., Sugiura, H., Matsuyama, K., Matsumoto, H., Ichikawa, S., & Komatsu, K. (1992). Cloning and disruption of the cefG gene encoding acetyl coenzyme A: deacetylcephalosporin C o-acetyltransferase from Acremonium chrysogenum. Biochemical and Biophysical Research Communications, 186, 40–46.

    Article  CAS  Google Scholar 

  23. Mathison, L., Soliday, C., Stepan, T., Aldrich, T., & Rambosek, J. (1993). Cloning, characterization, and use in strain improvement of the Cephalosporium acremonium gene cefG encoding acetyl transferase. Current Genetics, 23, 33–41.

    Article  CAS  Google Scholar 

  24. Nijland, J. G., Kovalchuk, A., van den Berg, M. A., Bovenberg, R. A., & Driessen, A. J. (2008). Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum. Fungal Genetics and Biology, 45, 1415–1421.

    Article  CAS  Google Scholar 

  25. Rodriguez-Saiz, M., Lembo, M., Bertetti, L., Muraca, R., Velasco, J., Malcangi, A., et al. (2004). Strain improvement for cephalosporin production by Acremonium chrysogenum using geneticin as a suitable transformation marker. FEMS Microbiology Letters, 235, 43–49.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National High-Tech Research & Development (863) Plan of China (Grant No. 2006AA020302) and by the Science and Technology Commission of Shanghai Municipality (Grant Nos. 07DZ22002, 08DZ2230600, and 08DZ220700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjia Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Gong, G., Xie, L. et al. Improvement of Cephalosporin C Production by Recombinant DNA Integration in Acremonium chrysogenum . Mol Biotechnol 44, 101–109 (2010). https://doi.org/10.1007/s12033-009-9214-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9214-4

Keywords

Navigation