Skip to main content
Log in

Enteractinococcus lamae sp. nov. and Enteractinococcus viverrae sp. nov., isolated from animal faeces

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Two novel actinobacteria, designated strains YIM 101617T and YIM 101632T, were isolated from Lama pacos (alpaca) and Viverra zibetha (civet) faeces in Yunnan Wild Animal Park in Yunnan province, southwestern China. Both strains should be placed in genus Enteractinococcus based on phylogenetic analysis. Based on 16S rRNA gene sequence analysis, strain YIM 101617T exhibits high similarity to Enteractinococcus fodinae DSM 22966T (97.70 %) and Enteractinococcus coprophilus YIM 100590T (97.45 %), whilst YIM 101632T exhibits high similarity to Enteractinococcus coprophilus YIM 100590T (97.25 %), and the similarity between YIM 101617T and YIM 101632T is 95.90 %. However, DNA–DNA hybridization values of the two strains with the type strains in the genus Enteractinococcus were low (<70 %). Most morphological and chemotaxonomic characteristics of the two strains were found to be similar to those of species in the genus Enteractinococcus but also some differences were observed. The DNA G+C contents of strains YIM 101617T and YIM 101632T were determined to be 55.9 and 56.4 mol%, respectively. Based on these data, the two strains are concluded to represent two different novel species in the genus Enteractinococcus. The names Enteractinococcus lamae sp. nov. (type strain YIM 101617T=DSM 27612T=CCTCC AB 2013230T) and Enteractinococcus viverrae sp. nov. (type strain YIM 101632T=KCTC 39552T=CCTCC AB 2013280T) are proposed, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Cao YR, Jiang Y, Jin RX, Han L, He WX, Li YL, Huang XS, Xue QH (2012) Enteractinococcus coprophilus gen. nov., sp. nov., of the family Micrococcaceae, isolated from Panthera tigris amoyensis faeces, and transfer of Yaniella fodinae Dhanjal, et al. 2011 to the genus Enteractinococcus as Enteractinococcus fodinae comb. nov. Int J Syst Evol Microbiol 62:2710–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerny G (1978) Studies on aminopeptidase for the distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:113–122

    Article  CAS  Google Scholar 

  • Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M (2000) DNA–DNA hybridization determined in microwells using covalent attachment of DNA. Int J Syst Evol Microbiol 50:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP, Xu LH, Jiang CL (2001) Streptomonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51:357–363

    Article  CAS  PubMed  Google Scholar 

  • Dhanjal S, Ruckmani A, Cameotra SS, Pukall R, Klenk HP, Mayilraj S (2011) Yaniella fodinae sp. nov., a novel member of the genus Yaniella isolated from coal mine. Int J Syst Evol Microbiol 61:535–539

    Article  CAS  PubMed  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–379

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • He L, Li W, Huang Y, Wang LM, Liu ZH, Lanoot BJ, Vancanneyt M, Swings J (2005) Streptomyces jietaisiensis sp. nov., isolated from soil in northern China. Int J Syst Evol Microbiol 55:1939–1944

    Article  CAS  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH & other authors (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367

    Article  CAS  Google Scholar 

  • Leifson E (1960) Atlas of Bacterial Flagellation. Academic Press, London

    Book  Google Scholar 

  • Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428

    Article  PubMed  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang SK, Wang Y, Chen Y, Lou K, Cao LL, Xu LH, Li WJ (2009) Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 59:2025–2032

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tindall BJ, Sikorski J, Smibert RA, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology. American Society for Microbiology, Washington DC, pp 330–393

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. In. J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu H, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family Oxalobacteraceae isolated from China. Int J Syst Evol Microbiol 55:1149–1153

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China (No. 31270001), and supported by Program for New Century Excellent Talents in University and Basic Scientific Research Fund of Northeastern University, China (No. N120820002). Thanks for the assistance of Yunnan Wild Animal Park, and the help from Mr. Chun-hua Yang and animal keeper Dr. Jun-long Huang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Jiang or Li Han.

Additional information

Xiu Chen and Gui-Ding Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 441 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, GD., Li, QY. et al. Enteractinococcus lamae sp. nov. and Enteractinococcus viverrae sp. nov., isolated from animal faeces. Antonie van Leeuwenhoek 108, 1477–1483 (2015). https://doi.org/10.1007/s10482-015-0603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0603-3

Keywords

Navigation