Skip to main content
Log in

Bacterial reference genes for gene expression studies by RT-qPCR: survey and analysis

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The appropriate choice of reference genes is essential for accurate normalization of gene expression data obtained by the method of reverse transcription quantitative real-time PCR (RT-qPCR). In 2009, a guideline called the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) highlighted the importance of the selection and validation of more than one suitable reference gene for obtaining reliable RT-qPCR results. Herein, we searched the recent literature in order to identify the bacterial reference genes that have been most commonly validated in gene expression studies by RT-qPCR (in the first 5 years following publication of the MIQE guidelines). Through a combination of different search parameters with the text mining tool MedlineRanker, we identified 145 unique bacterial genes that were recently tested as candidate reference genes. Of these, 45 genes were experimentally validated and, in most of the cases, their expression stabilities were verified using the software tools geNorm and NormFinder. It is noteworthy that only 10 of these reference genes had been validated in two or more of the studies evaluated. An enrichment analysis using Gene Ontology classifications demonstrated that genes belonging to the functional categories of DNA Replication (GO: 0006260) and Transcription (GO: 0006351) rendered a proportionally higher number of validated reference genes. Three genes in the former functional class were also among the top five most stable genes identified through an analysis of gene expression data obtained from the Pathosystems Resource Integration Center. These results may provide a guideline for the initial selection of candidate reference genes for RT-qPCR studies in several different bacterial species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Borges V, Ferreira R, Nunes A, Nogueira P, Borrego MJ, Gomes JP (2010) Normalization strategies for real-time expression data in Chlamydia trachomatis. J Microbiol Methods 82(3):256–264

    Article  CAS  PubMed  Google Scholar 

  • Brudal E, Winther-Larsen HC, Colquhoun DJ, Duodu S (2013) Evaluation of reference genes for reverse transcription quantitative PCR analyses of fish-pathogenic Francisella strains exposed to different growth conditions. BMC Res Notes 2(6):76

    Article  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

  • Bustin SA, Benes V, Garson J, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley G, Wittwer CT, Schjerling P, Day PJ, Abreu M, Aguado B, Beaulieu JF, Beckers A, Bogaert S, Browne JA, Carrasco-Ramiro F, Ceelen L, Ciborowski K, Cornillie P, Coulon S, Cuypers A, De Brouwer S, De Ceuninck L, De Craene J, De Naeyer H, De Spiegelaere W, Deckers K, Dheedene A, Durinck K, Ferreira-Teixeira M, Fieuw A, Gallup JM, Gonzalo-Flores S, Goossens K, Heindryckx F, Herring E, Hoenicka H, Icardi L, Jaggi R, Javad F, Karampelias M, Kibenge F, Kibenge M, Kumps C, Lambertz I, Lammens T, Markey A, Messiaen P, Mets E, Morais S, Mudarra-Rubio A, Nakiwala J, Nelis H, Olsvik PA, Pérez-Novo C, Plusquin M, Remans T, Rihani A, Rodrigues-Santos P, Rondou P, Sanders R, Schmidt-Bleek K, Skovgaard K, Smeets K, Tabera L, Toegel S, Van Acker T, Van den Broeck W, Van der Meulen J, Van Gele M, Van Peer G, Van Poucke M, Van Roy N, Vergult S, Wauman J, Tshuikina-Wiklander M, Willems E, Zaccara S, Zeka F, Vandesompele J (2013) The need for transparency and good practices in the qPCR literature. Nat Methods 10(11):1063–1067

    Article  CAS  PubMed  Google Scholar 

  • Carvalho DM, de Sá PH, Castro TL, Carvalho RD, Pinto A, Rocha DJPG, Bagano P, Bastos B, Costa LF, Meyer R, Silva A, Azevedo V, Ramos RT, Pacheco LG (2014) Reference genes for RT-qPCR studies in Corynebacterium pseudotuberculosis identified through analysis of RNA-seq data. Antonie Van Leeuwenhoek 106(4):605–614

    Article  CAS  PubMed  Google Scholar 

  • Florindo C, Ferreira R, Borges V, Spellerberg B, Gomes JP, Borrego MJ (2012) Selection of reference genes for real-time expression studies in Streptococcus agalactiae. J Microbiol Methods 90(3):220–227

    Article  CAS  PubMed  Google Scholar 

  • Fontaine JF, Barbosa-Silva A, Schaefer M, Huska MR, Muro EM, Andrade-Navarro MA (2009) MedlineRanker: flexible ranking of biomedical literature. Nucl Acids Res 37:W141–W146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Galisa SP, Silva HAP, Macedo AVM, Reis VM, Vidal MS, Baldani JI, Simões-Araújo JL (2012) Identification and validation of reference genes to study the gene expression in Gluconacetobacter diazotrophicus grown in different carbon sources using RT-qPCR. J Microbiol Methods 91(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Gene Ontology Consortium (2015) Gene ontology consortium: going forward. Nucl Acids Res 43:D1049–D1056

    Article  Google Scholar 

  • Hommais F, Zghidi-Abouzid O, Oger-Desfeux C, Pineau-Chapelle E, Van Gijsegem F, Nasser W, Reverchon S (2011) lpxC and yafS are the most suitable internal controls to normalize real time RT-qPCR expression in the phytopathogenic bacteria Dickeya dadantii. PLoS One 6(5):e20269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacob TR, Laia ML, Ferro JA, Ferro MI (2011) Selection and validation of reference genes for gene expression studies by reverse transcription quantitative PCR in Xanthomonas citri subsp. citri during infection of Citrus sinensis. Biotechnol Lett 33(6):1177–1184

    Article  CAS  PubMed  Google Scholar 

  • Kirk DG, Palonen E, Korkeala H, Lindström M (2014) Evaluation of normalization reference genes for RT-qPCR analysis of spo0A and four sporulation sigma factor genes in Clostridium botulinum Group I strain ATCC 3502. Anaerobe 26:14–19

    Article  CAS  PubMed  Google Scholar 

  • Kozera B, Rapacz M (2013) Reference genes in real-time PCR. J Appl Genet 54(4):391–406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu J, Tan Y, Yang X, Chen X, Li F (2013) Evaluation of Clostridium ljungdahlii DSM 13528 reference genes in gene expression studies by qRT-PCR. J Biosci Bioeng 116(4):460–464

    Article  CAS  PubMed  Google Scholar 

  • Løvdal T, Saha A (2014) Reference gene selection in Carnobacterium maltaromaticum, Lactobacillus curvatus, and Listeria innocua subjected to temperature and salt stress. Mol Biotechnol 56(3):210–222

    Article  PubMed  Google Scholar 

  • McMillan M, Pereg L (2014) Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense. PLoS One 9(5):e98162

    Article  PubMed Central  PubMed  Google Scholar 

  • Metcalf D, Sharif S, Weese JS (2010) Evaluation of candidate reference genes in Clostridium difficile for gene expression normalization. Anaerobe 16(4):439–443

    Article  CAS  PubMed  Google Scholar 

  • Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8(8):1551–1566

    Article  PubMed  Google Scholar 

  • Nieto PA, Covarrubias PC, Jedlicki E, Holmes DS, Quatrini R (2009) Selection and evaluation of reference genes for improved interrogation of microbial transcriptomes: case study with the extremophile Acidithiobacillus ferrooxidans. BMC Mol Biol 25(10):63

    Article  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: Bestkeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515

    Article  CAS  PubMed  Google Scholar 

  • Pinto F, Pacheco CC, Ferreira D, Moradas-Ferreira P, Tamagnini P (2012) Selection of suitable reference genes for RT-qPCR analyses in Cyanobacteria. PLoS One 7(4):e34983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reiter L, Kolstø AB, Piehler AP (2011) Reference genes for quantitative, reverse-transcription PCR in Bacillus cereus group strains throughout the bacterial life cycle. J Microbiol Methods 86(2):210–217

    Article  CAS  PubMed  Google Scholar 

  • Sihto HM, Tasara T, Stephan R, Johler S (2014) Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation. FEMS Microbiol Lett 356(1):134–140

    Article  CAS  PubMed  Google Scholar 

  • Stenico V, Baffoni L, Gaggìa F, Biavati B (2014) Validation of candidate reference genes in Bifidobacterium adolescentis for gene expression normalization. Anaerobe 27:34–39

    Article  CAS  PubMed  Google Scholar 

  • Sumby KM, Grbin PR, Jiranek V (2012) Validation of the use of multiple internal control genes, and the application of real-time quantitative PCR, to study esterase gene expression in Oenococcus oeni. Appl Microbiol Biotechnol 96(4):1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Szekeres E, Sicora C, Dragoş N, Drugă B (2014) Selection of proper reference genes for the cyanobacterium Synechococcus PCC 7002 using real-time quantitative PCR. FEMS Microbiol Lett 359(1):102–109

    Article  CAS  PubMed  Google Scholar 

  • Taylor SC, Mrkusich EM (2014) The state of RT-quantitative PCR: firsthand observations of implementation of minimum information for the publication of quantitative real-time PCR experiments (MIQE). J Mol Microbiol Biotechnol 24(1):46–52

    Article  CAS  PubMed  Google Scholar 

  • Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M (2010) A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines. Methods 50(4):S1–S5

    Article  CAS  PubMed  Google Scholar 

  • Thellin O, ElMoualij B, Heinen E, Zorzi W (2009) A decade of improvements in quantification of gene expression and internal standard selection. Biotechnol Adv 27(4):323–333

    Article  CAS  PubMed  Google Scholar 

  • Thomas F, Barbeyron T, Michel G (2011) Evaluation of reference genes for real-time quantitative PCR in the marine flavobacterium Zobellia galactanivorans. J Microbiol Methods 84(1):61–66

    Article  CAS  PubMed  Google Scholar 

  • Turroni F, Foroni E, Montanini B, Viappiani A, Strati F, Duranti S, Ferrarini A, Delledonne M, van Sinderen D, Ventura M (2011) Global genome transcription profiling of Bifidobacterium bifidum PRL2010 under in vitro conditions and identification of reference genes for quantitative real-time PCR. Appl Environ Microbiol 77(24):8578–8587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Article  PubMed Central  PubMed  Google Scholar 

  • Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R, Machi D, Mao C, Nordberg EK, Olson R, Overbeek R, Pusch GD, Shukla M, Schulman J, Stevens RL, Sullivan DE, Vonstein V, Warren A, Will R, Wilson MJ, Yoo HS, Zhang C, Zhang Y, Sobral BW (2014) PATRIC, the bacterial bioinformatics database and analysis resource. Nucl Acids Res 42:D581–D591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao W, Li Y, Gao P, Sun Z, Sun T, Zhang H (2011) Validation of reference genes for real-time quantitative PCR studies in gene expression levels of Lactobacillus casei Zhang. J Ind Microbiol Biotechnol 38(9):1279–1286

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Zhou L, Lim Q, Zou R, Stephanopoulos G, Too HP (2011) Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. BMC Mol Biol 12:18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

DJPR is recipient of a scholarship from the National Council for Scientific and Technological Development of Brazil (CNPq). CSS is recipient of a scholarship from the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB). Work at our group is supported by grants from the Brazilian Research Funding Agencies FAPESB, CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis G. C. Pacheco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 659 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, D.J.P., Santos, C.S. & Pacheco, L.G.C. Bacterial reference genes for gene expression studies by RT-qPCR: survey and analysis. Antonie van Leeuwenhoek 108, 685–693 (2015). https://doi.org/10.1007/s10482-015-0524-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0524-1

Keywords

Navigation