Skip to main content
Log in

Balancing energy consumption and thermal comfort in buildings: a multi-criteria framework

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The present study proposes a multi-criteria framework that focuses on two conflicting objectives typically encountered in building energy management systems: energy consumption of the air handling units (AHU) and thermal comfort of the occupants. In particular, an adaptive control of set points to AHU controllers is crucial to balance these objectives. This study, therefore, formulates the selection of set points as an optimization problem wherein the objectives are to balance thermal comfort with energy consumption while accommodating the distinct preferences of the decision maker (DM). Two multi-criteria decision-making formulations are considered to aggregate the objectives per the DM’s preferences, i.e., conventional weight aggregation and \(\epsilon \)-constraint. Finally, an online particle swarm optimization is used to solve such aggregated formulations and adapt the set points in real time as per the prevailing ambient conditions. The performance of the proposed framework is assessed by considering an experimentally validated model of an AHU plant and the real-time weather data of Auckland, New Zealand. The results of this investigation show that the proposed framework can successfully optimize the energy performance of an AHU plant while meeting the thermal comfort requirements specified by the DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1:
Algorithm 2:
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. From a minimization perspective.

References

  • Abdelaziz, F. B., Aouni, B., & El Fayedh, R. (2007). Multi-objective stochastic programming for portfolio selection. European Journal of Operational Research, 177(3), 1811–1823.

    Article  Google Scholar 

  • Abdelaziz, F. B., & Mallek, R. S. (2018). Multi-criteria optimal stopping methods applied to the portfolio optimisation problem. Annals of Operations Research, 267, 29–46.

    Article  Google Scholar 

  • Afram, A., Janabi-Sharifi, F., Fung, A. S., & Raahemifar, K. (2017). Artificial neural network based model predictive control and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system. Energy and Buildings, 141, 96–113.

    Article  Google Scholar 

  • Aouni, B. (2009). Multi-attribute portfolio selection: New perspectives. INFOR: Information Systems and Operational Research, 47(1), 1–4.

    Google Scholar 

  • Aouni, B., Ben Abdelaziz, F., & La Torre, D. (2012). The stochastic goal programming model: Theory and applications. Journal of Multi-Criteria Decision Analysis, 19(5–6), 185–200.

    Article  Google Scholar 

  • Aparicio-Ruiz, P., Barbadilla-Martín, E., Guadix, J., & Cortés, P. (2021). KNN and adaptive comfort applied in decision making for HVAC systems. Annals of Operations Research, 303, 217–231.

    Article  Google Scholar 

  • Asad, H. S., Yuen, R. K. K., & Huang, G. (2016). Degree of freedom based set-point reset scheme for HVAC real-time optimization. Energy and Buildings, 128, 349–359.

    Article  Google Scholar 

  • ASHRAE. (2017). ASHRAE STANDARD: Thermal environmental conditions for human occupancy. ISSN 1041-2336.

  • Chakraborty, N., Mondal, A., & Mondal, S. (2019). Multi-objective optimal scheduling framework for HVAC devices in energy-efficient buildings. IEEE Systems Journal, 13(4), 4398–4409.

    Article  Google Scholar 

  • Che, W. W., Tso, C. Y., Sun, L., Ip, D. Y., Lee, H., Chao, C. Y., & Lau, A. K. (2019). Energy consumption, indoor thermal comfort and air quality in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system. Energy and Buildings, 201, 202–215.

    Article  Google Scholar 

  • Colapinto, C., Jayaraman, R., Ben Abdelaziz, F., & La Torre, D. (2020). Environmental sustainability and multifaceted development: Multi-criteria decision models with applications. Annals of Operations Research, 293(2), 405–432.

    Article  Google Scholar 

  • de Chalendar, J. A., McMahon, C., Valenzuela, L. F., Glynn, P. W., & Benson, S. M. (2023). Unlocking demand response in commercial buildings: Empirical response of commercial buildings to daily cooling set point adjustments. Energy and Buildings, 278, 112599.

    Article  Google Scholar 

  • Dietz, A., Vera, S., Bustamante, W., & Flamant, G. (2020). Multi-objective optimization to balance thermal comfort and energy use in a mining camp located in the Andes mountains at high altitude. Energy, 199, 117121.

    Article  Google Scholar 

  • Dong, J., Winstead, C., Nutaro, J., & Kuruganti, T. (2018). Occupancy-based HVAC control with short-term occupancy prediction algorithms for energy-efficient buildings. Energies, 11(9), 2427.

    Article  Google Scholar 

  • Ghahramani, A., Jazizadeh, F., & Becerik-Gerber, B. (2014). A knowledge based approach for selecting energy-aware and comfort-driven HVAC temperature set points. Energy and Buildings, 85, 536–548.

    Article  Google Scholar 

  • Hafiz, F., Broekaert, J., La Torre, D., & Swain, A. (2023). A multi-criteria approach to evolve sparse neural architectures for stock market forecasting. Annals of Operations Research. https://doi.org/10.1007/s10479-023-05715-6

  • Hafiz, F., Broekaert, J., La Torre, D., & Swain, A. (2023). Co-evolution of neural architectures and features for stock market forecasting: A multi-objective decision perspective. Decision Support Systems, 174, 114015.

    Article  Google Scholar 

  • Hafiz, F., Swain, A., & Mendes, E. (2020). Multi-objective evolutionary framework for non-linear system identification: A comprehensive investigation. Neurocomputing, 386, 257–280.

    Article  Google Scholar 

  • Hafiz, F., Swain, A., Mendes, E., & Aguirre, L. A. (2020). Multiobjective evolutionary approach to grey-box identification of buck converter. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(6), 2016–2028.

    Article  Google Scholar 

  • Haimes, Y. (1971). On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Transactions on Systems, Man, and Cybernetics, 1(3), 296–297.

    Google Scholar 

  • Hu, Y., Heiselberg, P. K., Drivsholm, C., Søvsø, A. S., Vogler-Finck, P. J., & Kronby, K. (2021). Experimental and numerical study of PCM storage integrated with HVAC system for energy flexibility. Energy Building, p 111651.

  • Jayaraman, R., Colapinto, C., La Torre, D., & Malik, T. (2015). Multi-criteria model for sustainable development using goal programming applied to the United Arab Emirates. Energy Policy, 87, 447–454.

    Article  Google Scholar 

  • Jin, Y., Okabe, T., & Sendho, B. (2001). Adapting weighted aggregation for multi-objective evolution strategies. In International conference on evolutionary multi-criterion optimization (pp. 96–110). Springer.

  • Jindal, A., Kumar, N., & Rodrigues, J. J. (2018). A heuristic-based smart HVAC energy management scheme for university buildings. IEEE Transactions on Industrial Informatics, 14(11), 5074–5086.

    Article  Google Scholar 

  • Kang, W. H., Yoon, Y., Lee, J. H., Song, K. W., Chae, Y. T., & Lee, K. H. (2021). In-situ application of an ANN algorithm for optimized chilled and condenser water temperatures set-point during cooling operation. Energy and Buildings, 233, 110666.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. In Proceedings of ICNN’95: international conference on neural networks (Vol. 4, pp. 1942–1948).

  • Krese, G., Lampret, Ž, Butala, V., & Prek, M. (2018). Determination of a building’s balance point temperature as an energy characteristic. Energy, 165, 1034–1049.

    Article  Google Scholar 

  • Laumanns, M., Thiele, L., & Zitzler, E. (2006). An efficient, adaptive parameter variation scheme for metaheuristics based on the \(\epsilon \)-constraint method. European Journal of Operational Research, 169(3), 932–942.

    Article  Google Scholar 

  • Li, D., Chiu, W.-Y., Sun, H., & Poor, H. V. (2017). Multiobjective optimization for demand side management program in smart grid. IEEE Transactions on Industrial Informatics, 14(4), 1482–1490.

    Article  Google Scholar 

  • Li, Q., Zhang, L., Zhang, L., & Wu, X. (2021). Optimizing energy efficiency and thermal comfort in building green retrofit. Energy, 237, 121509.

    Article  Google Scholar 

  • Lu, N. (2012). An evaluation of the HVAC load potential for providing load balancing service. IEEE Transactions on Smart Grid, 3(3), 1263–1270.

    Article  Google Scholar 

  • Ma, K., Hu, G., & Spanos, C. J. (2016). Energy management considering load operations and forecast errors with application to HVAC systems. IEEE Transactions on Smart Grid, 9(2), 605–614.

    Article  Google Scholar 

  • Malan, K. M. (2014). Characterising continuous optimisation problems for particle swarm optimisation performance prediction. Ph.D. thesis.

  • Malan, K. M., & Engelbrecht, A. P. (2009). Quantifying ruggedness of continuous landscapes using entropy. In 2009 IEEE congress on evolutionary computation (pp. 1440–1447). IEEE.

  • Malan, K. M., & Engelbrecht, A. P. (2014). A progressive random walk algorithm for sampling continuous fitness landscapes. In 2014 IEEE Congress on Evolutionary Computation (CEC) (pp. 2507–2514). IEEE.

  • Manic, M., Wijayasekara, D., Amarasinghe, K., & Rodriguez-Andina, J. J. (2016). Building energy management systems: The age of intelligent and adaptive buildings. IEEE Industrial Electronics Magazine, 10(1), 25–39.

    Article  Google Scholar 

  • Manjarres, D., Mera, A., Perea, E., Lejarazu, A., & Gil-Lopez, S. (2017). An energy-efficient predictive control for HVAC systems applied to tertiary buildings based on regression techniques. Energy and Buildings, 152, 409–417.

    Article  Google Scholar 

  • Mariano-Hernández, D., Hernández-Callejo, L., Zorita-Lamadrid, A., Duque-Pérez, O., & García, F. S. (2021). A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis. Journal of Building Engineering, 33, 101692.

    Article  Google Scholar 

  • Miettinen, K. (1998). Nonlinear multiobjective optimization. International series in operations research & management science, 12. Springer US, Boston, MA.

  • Moazeni, F., Khazaei, J., & Asrari, A. (2021). Step towards energy-water smart microgrids; buildings thermal energy and water demand management embedded in economic dispatch. IEEE Transactions on Smart Grid, 12(5), 3680–3691.

    Article  Google Scholar 

  • National Institute of Water and Atmospheric Research Limited (NIWA) (2021). Weather and climate forecasting services, Auckland, New Zealand. Retrieved from: https://niwa.co.nz/our-services/online-services/environmental-data-explorer-new-zealand.

  • Nikovski, D., Xu, J., & Nonaka, M. (2013). A method for computing optimal set-point schedules for HVAC systems. In Proceedings of the 11th REHVA World Congress CLIMA. Citeseer.

  • Nyawa, S., Gnekpe, C., & Tchuente, D. (2023). Transparent machine learning models for predicting decisions to undertake energy retrofits in residential buildings. Annals of Operations Research (pp. 1–29).

  • Pérez-Cañedo, B., Verdegay, J. L., & Miranda Perez, R. (2020). An \(\epsilon \)-constraint method for fully fuzzy multi-objective linear programming. International Journal of Intelligent Systems, 35(4), 600–624.

    Article  Google Scholar 

  • Picard, D., Kvasnica, M., & Helsen, L. et al. (2018). Approximate model predictive building control via machine learning. Applied Energy.

  • Razmak, J., & Aouni, B. (2015). Decision support system and multi-criteria decision aid: A state of the art and perspectives. Journal of Multi-criteria Decision Analysis, 22(1–2), 101–117.

    Article  Google Scholar 

  • Reynolds, J., Ahmad, M. W., Rezgui, Y., & Hippolyte, J.-L. (2019). Operational supply and demand optimisation of a multi-vector district energy system using artificial neural networks and a genetic algorithm. Applied Energy, 235, 699–713.

    Article  Google Scholar 

  • Rezaei, E., & Dagdougui, H. (2020). Optimal real-time energy management in apartment building integrating microgrid with multi-zone HVAC control. IEEE Transactions on Industrial Informatics, 16(11), 6848–6856.

    Article  Google Scholar 

  • Rocha, P., Siddiqui, A., & Stadler, M. (2015). Improving energy efficiency via smart building energy management systems: A comparison with policy measures. Energy and Buildings, 88, 203–213.

    Article  Google Scholar 

  • Saleem, S., Gallagher, M., & Wood, I. (2019). Direct feature evaluation in black-box optimization using problem transformations. Evolutionary computation, 27(1), 75–98.

    Article  Google Scholar 

  • Shakouri, H., & Kazemi, A. (2017). Multi-objective cost-load optimization for demand side management of a residential area in smart grids. Sustainable Cities and Society, 32, 171–180.

    Article  Google Scholar 

  • Tabares-Velasco, P. C. (2016). Time step considerations when simulating dynamic behavior of high performance homes. Technical report, National Renewable Energy Lab. (NREL), Golden, CO (United States).

  • Tien, P. W., Wei, S., Calautit, J. K., Darkwa, J., & Wood, C. (2020). A vision-based deep learning approach for the detection and prediction of occupancy heat emissions for demand-driven control solutions. Energy and Buildings, 226, 110386.

    Article  Google Scholar 

  • Tsui, K. M., & Chan, S.-C. (2012). Demand response optimization for smart home scheduling under real-time pricing. IEEE Transactions on Smart Grid, 3(4), 1812–1821.

    Article  Google Scholar 

  • Turner, R. (2023). An update to Aotearoa/New Zealand design temperatures. The Institute of Refrigeration Heating and Air Conditioning Engineers of New Zealand Inc (IRHACE).

  • Underwood, C. (2000). Robust control of HVAC plant I: Modelling. Building services engineering research and technology, 21(1), 53–61.

    Article  Google Scholar 

  • Underwood, C. (2000). Robust control of HVAC plant II: Controller design. Building Services Engineering Research and Technology, 21(1), 63–71.

    Article  Google Scholar 

  • van Aardt, W. A., Bosman, A. S., & Malan, K. M. (2017). Characterising neutrality in neural network error landscapes. In 2017 IEEE congress on evolutionary computation (CEC) (pp. 1374–1381). IEEE.

  • Vassilev, V. K., Fogarty, T. C., & Miller, J. F. (2000). Information characteristics and the structure of landscapes. Evolutionary computation, 8(1), 31–60.

    Article  Google Scholar 

  • Wang, Z., Calautit, J., Wei, S., Tien, P. W., & Xia, L. (2022). Real-time building heat gains prediction and optimization of HVAC setpoint: An integrated framework. Journal of Building Engineering, 49, 104103.

    Article  Google Scholar 

  • Wani, M., Hafiz, F., Swain, A., & Ukil, A. (2021). Estimating thermal parameters of a commercial building: A meta-heuristic approach. Energy and Buildings, 231, 110537.

    Article  Google Scholar 

  • Yu, L., Jiang, T., & Zou, Y. (2017). Online energy management for a sustainable smart home with an HVAC load and random occupancy. IEEE Transactions on Smart Grid, 10(2), 1646–1659.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshya Swain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, M., Hafiz, F., Swain, A. et al. Balancing energy consumption and thermal comfort in buildings: a multi-criteria framework. Ann Oper Res (2023). https://doi.org/10.1007/s10479-023-05747-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-023-05747-y

Keywords

Navigation