Skip to main content

Advertisement

Log in

Coordination of social welfare, collecting, recycling and pricing decisions in a competitive sustainable closed-loop supply chain: a case for lead-acid battery

  • S.I.: OR for Sustainability in Supply Chain Management
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In order to attain competitive advantage, it is of high importance for firms to move towards sustainability. In practice, an efficient sustainable closed-loop supply chain (SCLSC) can reduce the negative effects of hazardous wastes and consequently improve the environmental dimension of sustainability. Besides the environmental dimension, the social aspect of sustainability can be achieved through initiating corporate social responsibility and enhancing social welfare of customers. Different from the existing literature, this paper proposes an analytical coordination model to not only cover all three dimensions of sustainability in a SCLSC but also to align different decisions made in competitive forward and reverse logistics. The proposed SCLSC is modeled under decentralized, centralized, and coordinated decision-making structures considering different game behaviors in the forward and reverse links. The results reveal that the proposed two-way two-part tariff (TWTPT) contract is of high benefit to the sustainable CLSC as it is able to simultaneously enhance the environmental, economic, and social performances. To be more precise, the proposed model improves the collection rate, consumer surplus, social welfare, and profits of all CLSC members. In addition, our findings demonstrate the applicability and efficiency of the proposed TWTPT contract in motivating the agents of both competitive forward and reverse chains to participate in the coordination scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bonney, M., & Jaber, M. Y. (2011). Environmentally responsible inventory models: Non-classical models for a non-classical era. International Journal of Production Economics, 133(1), 43–53.

    Article  Google Scholar 

  • Bulmus, S. C., Zhu, S. X., & Teunter, R. (2014a). Competition for cores in remanufacturing. European Journal of Operational Research, 233(1), 105–113.

    Article  Google Scholar 

  • Bulmus, S. C., Zhu, S. X., & Teunter, R. H. (2014b). Optimal core acquisition and pricing strategies for hybrid manufacturing and remanufacturing systems. International Journal of Production Research, 52(22), 6627–6641.

    Article  Google Scholar 

  • Chaharsooghi, S. K., & Heydari, J. (2010). Supply chain coordination for the joint determination of order quantity and reorder point using credit option. European Journal of Operational Research, 204(1), 86–95.

    Article  Google Scholar 

  • Chen, X., Wang, X., & Chan, H. K. (2017). Manufacturer and retailer coordination for environmental and economic competitiveness: A power perspective. Transportation Research Part E: Logistics and Transportation Review, 97, 268–281.

    Article  Google Scholar 

  • De Giovanni, P. (2014). Environmental collaboration in a closed-loop supply chain with a reverse revenue sharing contract. Annals of Operations Research, 220(1), 135–157.

    Article  Google Scholar 

  • De Giovanni, P. (2017). Closed-loop supply chain coordination through incentives with asymmetric information. Annals of Operations Research, 253(1), 133–167.

    Article  Google Scholar 

  • Ebrahimi, S., Hosseini-Motlagh, S.-M., & Nematollahi, M. (2017). Proposing a delay in payment contract for coordinating a two-echelon periodic review supply chain with stochastic promotional effort dependent demand. International Journal of Machine Learning and Cybernetics, 9, 1–14.

    Google Scholar 

  • Feng, L., Govindan, K., & Li, C. (2017). Strategic planning: Design and coordination for dual-recycling channel reverse supply chain considering consumer behavior. European Journal of Operational Research, 260(2), 601–612.

    Article  Google Scholar 

  • Gao, J., Han, H., Hou, L., & Wang, H. (2016). Pricing and effort decisions in a closed-loop supply chain under different channel power structures. Journal of Cleaner Production, 112, 2043–2057.

    Article  Google Scholar 

  • Govindan, K., Agarwal, V., Darbari, J. D., & Jha, P. C. (2017). An integrated decision making model for the selection of sustainable forward and reverse logistic providers. Annals of Operations Research, 273, 1–44.

    Google Scholar 

  • Govindan, K., Jha, P. C., & Garg, K. (2016). Product recovery optimization in closed-loop supply chain to improve sustainability in manufacturing. International Journal of Production Research, 54(5), 1463–1486.

    Article  Google Scholar 

  • Govindan, K., Khodaverdi, R., & Jafarian, A. (2013a). A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach. Journal of Cleaner Production, 47, 345–354.

    Article  Google Scholar 

  • Govindan, K., & Popiuc, M. N. (2014). Reverse supply chain coordination by revenue sharing contract: A case for the personal computers industry. European Journal of Operational Research, 233(2), 326–336.

    Article  Google Scholar 

  • Govindan, K., Popiuc, M. N., & Diabat, A. (2013b). Overview of coordination contracts within forward and reverse supply chains. Journal of Cleaner Production, 47, 319–334.

    Article  Google Scholar 

  • Govindan, K., Soleimani, H., & Kannan, D. (2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European Journal of Operational Research, 240(3), 603–626.

    Article  Google Scholar 

  • Guo, S., Shen, B., Choi, T.-M., & Jung, S. (2017). A review on supply chain contracts in reverse logistics: Supply chain structures and channel leaderships. Journal of Cleaner Production, 144, 387–402.

    Article  Google Scholar 

  • Heydari, J., Govindan, K., & Jafari, A. (2017). Reverse and closed loop supply chain coordination by considering government role. Transportation Research Part D: Transport and Environment, 52, 379–398.

    Article  Google Scholar 

  • Hosseini-Motlagh, S. M., Nematollahi, M., Johari, M., & Sarker, B. R. (2018a). A collaborative model for coordination of monopolistic manufacturer’s promotional efforts and competing duopolistic retailers’ trade credits. International Journal of Production Economics. https://doi.org/10.1016/j.ijpe.2018.07.027.

    Google Scholar 

  • Hosseini-Motlagh, S. M., Nematollahi, M., & Nouri, M. (2018b). Coordination of green quality and green warranty decisions in a two-echelon competitive supply chain with substitutable products. Journal of Cleaner Production, 196, 961–984.

    Article  Google Scholar 

  • Hsueh, C. F. (2014). Improving corporate social responsibility in a supply chain through a new revenue sharing contract. International Journal of Production Economics, 151, 214–222.

    Article  Google Scholar 

  • Huang, M., Song, M., Lee, L. H., & Ching, W. K. (2013). Analysis for strategy of closed-loop supply chain with dual recycling channel. International Journal of Production Economics, 144(2), 510–520.

    Article  Google Scholar 

  • Jazinaninejad, M., Seyedhosseini, S. M., Hosseini-Motlagh, S. M., & Nematollahi, M. (2017). Coordinated decision-making on manufacturer’s EPQ-based and buyer’s period review inventory policies with stochastic price-sensitive demand: A credit option approach. RAIRO-Operations Research. https://doi.org/10.1051/ro/2018038.

    Google Scholar 

  • Johari, M., & Hosseini-Motlagh, S. (2018). Coordination of cooperative promotion efforts with competing retailers in a manufacturer-retailer supply chain. Uncertain Supply Chain Management, 6(1), 25–48.

    Article  Google Scholar 

  • Johari, M., Hosseini-Motlagh, S. M., Nematollahi, M., Goh, M., & Ignatius, J. (2018). Bi-level credit period coordination for periodic review inventory system with price-credit dependent demand under time value of money. Transportation Research Part E: Logistics and Transportation Review, 114, 270–291.

    Article  Google Scholar 

  • Li, J., & Liu, L. (2006). Supply chain coordination with quantity discount policy. International Journal of Production Economics, 101(1), 89–98.

    Article  Google Scholar 

  • Li, J., Wang, Z., Jiang, B., & Kim, T. (2017). Coordination strategies in a three-echelon reverse supply chain for economic and social benefit. Applied Mathematical Modelling, 49, 1.

    Article  Google Scholar 

  • Liu, X., Li, J., Wu, J., & Zhang, G. (2017a). Coordination of supply chain with a dominant retailer under government price regulation by revenue sharing contracts. Annals of Operations Research, 257(1–2), 587–612.

    Article  Google Scholar 

  • Liu, L., Wang, Z., Xu, L., Hong, X., & Govindan, K. (2017b). Collection effort and reverse channel choices in a closed-loop supply chain. Journal of Cleaner Production, 144, 492–500.

    Article  Google Scholar 

  • Liu, P., & Yi, S. P. (2018). Investment decision-making and coordination of a three-stage supply chain considering Data Company in the Big Data era. Annals of Operations Research, 2019, 1–17.

    Google Scholar 

  • Ma, H., & Li, X. (2017). Closed-loop supply chain network design for hazardous products with uncertain demands and returns. Applied Soft Computing, 68, 25.

    Google Scholar 

  • Mintzberg, H., & Mintzberg, H. (1983). Power in and around organizations (Vol. 142). Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Modak, N. M., Modak, N., Panda, S., & Sana, S. S. (2018). Analyzing structure of two-echelon closed-loop supply chain for pricing, quality and recycling management. Journal of Cleaner Production, 171, 512–528.

    Article  Google Scholar 

  • Modak, N. M., Panda, S., & Sana, S. S. (2016a). Two-echelon supply chain coordination among manufacturer and duopolies retailers with recycling facility. The International Journal of Advanced Manufacturing Technology, 87(5–8), 1531–1546.

    Article  Google Scholar 

  • Modak, N. M., Panda, S., & Sana, S. S. (2016b). Pricing policy and coordination for a two-layer supply chain of duopolistic retailers and socially responsible manufacturer. International Journal of Logistics Research and Applications, 19(6), 487–508.

    Article  Google Scholar 

  • Modak, N. M., Panda, S., & Sana, S. S. (2016c). Three-echelon supply chain coordination considering duopolistic retailers with perfect quality products. International Journal of Production Economics, 182, 564–578.

    Article  Google Scholar 

  • Modak, N. M., Panda, S., Sana, S. S., & Basu, M. (2014). Corporate social responsibility, coordination and profit distribution in a dual-channel supply chain. Pacific Science Review, 16(4), 235–249.

    Article  Google Scholar 

  • Muzi, A. (1995). Collection of spent batteries in Rome. Journal of Power Sources, 57(1), 19–21.

    Article  Google Scholar 

  • Nematollahi, M., Hosseini-Motlagh, S.-M., & Heydari, J. (2017a). Coordination of social responsibility and order quantity in a two-echelon supply chain: A collaborative decision-making perspective. International Journal of Production Economics, 184, 107–121.

    Article  Google Scholar 

  • Nematollahi, M., Hosseini-Motlagh, S.-M., & Heydari, J. (2017b). Economic and social collaborative decision-making on visit interval and service level in a two-echelon pharmaceutical supply chain. Journal of Cleaner Production, 142, 3956–3969.

    Article  Google Scholar 

  • Nematollahi, M., Hosseini-Motlagh, S. M., Ignatius, J., Goh, M., & Nia, M. S. (2018). Coordinating a socially responsible pharmaceutical supply chain under periodic review replenishment policies. Journal of Cleaner Production, 172, 2876.

    Article  Google Scholar 

  • Nouri, M., Hosseini-Motlagh, S.-M., Nematollahi, M., & Sarker, B. R. (2018). Coordinating manufacturer’s innovation and retailer’s promotion and replenishment using a compensation-based wholesale price contract. International Journal of Production Economics, 198, 11–24.

    Article  Google Scholar 

  • Panda, S. (2014). Coordination of a socially responsible supply chain using revenue sharing contract. Transportation Research Part E: Logistics and Transportation Review, 67, 92–104.

    Article  Google Scholar 

  • Panda, S., & Modak, N. M. (2016). Exploring the effects of social responsibility on coordination and profit division in a supply chain. Journal of Cleaner Production, 139, 25–40.

    Article  Google Scholar 

  • Panda, S., Modak, N. M., & Cárdenas-Barrón, L. E. (2017). Coordinating a socially responsible closed-loop supply chain with product recycling. International Journal of Production Economics, 188, 11–21.

    Article  Google Scholar 

  • Rostamzadeh, R., Ghorabaee, M. K., Govindan, K., Esmaeili, A., & Nobar, H. B. K. (2018). Evaluation of sustainable supply chain risk management using an integrated fuzzy TOPSIS-CRITIC approach. Journal of Cleaner Production, 175, 651–669.

    Article  Google Scholar 

  • Savaskan, R. C., Bhattacharya, S., & Van Wassenhove, L. N. (2004). Closed-loop supply chain models with product remanufacturing. Management Science, 50(2), 239–252.

    Article  Google Scholar 

  • Shi, Z., Wang, N., Jia, T., & Chen, H. (2016). Reverse revenue sharing contract versus two-part tariff contract under a closed-loop supply chain system. Mathematical Problems in Engineering, 2016, 1–15.

    Google Scholar 

  • Tsao, Y.-C. (2010). Managing multi-echelon multi-item channels with trade allowances under credit period. International Journal of Production Economics, 127(2), 226–237.

    Article  Google Scholar 

  • Tsoulfas, G. T., Pappis, C. P., & Minner, S. (2002). An environmental analysis of the reverse supply chain of SLI batteries. Resources, Conservation and Recycling, 36(2), 135–154.

    Article  Google Scholar 

  • Vickers, J. (1985). Delegation and the theory of the firm. The Economic Journal, 95, 138–147.

    Article  Google Scholar 

  • WCED (World Commission on Environment and Development). (1987). Our common future. Oxford: Oxford University Press.

    Google Scholar 

  • Wei, J., & Zhao, J. (2011). Pricing decisions with retail competition in a fuzzy closed-loop supply chain. Expert Systems with Applications, 38(9), 11209–11216.

    Article  Google Scholar 

  • Wu, C. H. (2012). Price and service competition between new and remanufactured products in a two-echelon supply chain. International Journal of Production Economics, 140(1), 496–507.

    Article  Google Scholar 

  • Wu, C. H. (2015). Strategic and operational decisions under sales competition and collection competition for end-of-use products in remanufacturing. International Journal of Production Economics, 169, 11–20.

    Article  Google Scholar 

  • Xu, C., Li, B., Lan, Y., & Tang, Y. (2014). A closed-loop supply chain problem with retailing and recycling competition. In J. Banaś (Ed.), Abstract and applied analysis (Vol. 2014). London: Hindawi.

    Google Scholar 

  • Zhao, J., Wei, J., & Li, M. (2017). Collecting channel choice and optimal decisions on pricing and collecting in a remanufacturing supply chain. Journal of Cleaner Production, 167, 1.

    Article  Google Scholar 

  • Zhao, S., & Zhu, Q. (2017). Remanufacturing supply chain coordination under the stochastic remanufacturability rate and the random demand. Annals of Operations Research, 257(1–2), 661–695.

    Article  Google Scholar 

  • Zhao, Y., Choi, T.-M., Cheng, T., Sethi, S. P., & Wang, S. (2014). Buyback contracts with price-dependent demands: Effects of demand uncertainty. European Journal of Operational Research, 239(3), 663–673.

    Article  Google Scholar 

  • Zheng, B., Yang, C., Yang, J., & Zhang, M. (2017). Pricing, collecting and contract design in a reverse supply chain with incomplete information. Computers & Industrial Engineering, 111, 109–122.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the editor and two anonymous reviewers for their constructive comments and suggestions which significantly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed-Mahdi Hosseini-Motlagh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A (Proof of Theorem 3)

To prove the concavity of the remanufacturer’s profit w.r.t. \( w_{rm} \) and \( t_{rm} \) under Cournot game structure, the Hessian matrix of \( \pi_{rm} \left( {w_{rm} ,t_{rm} } \right) \) is investigated as follows. If the Hessian matrix is negative definite, then \( \pi_{rm} \left( {w_{rm} ,t_{rm} } \right) \) is concave w.r.t. \( w_{rm} \) and \( t_{rm} \).

$$ H\left( {\pi_{rm} \left( {w_{rm} ,t_{rm} } \right)} \right) = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{rm} }}{{\partial t_{rm}^{2} }}} & {\frac{{\partial^{2} \pi_{rm} }}{{\partial t_{rm} \partial w_{rm} }}} \\ {\frac{{\partial^{2} \pi_{rm} }}{{\partial w_{rm} \partial t_{rm} }}} & {\frac{{\partial^{2} \pi_{rm} }}{{\partial w_{rm}^{2} }}} \\ \end{array} } \right] $$
(1a)

The first principal minor is negative:

$$ H_{11} = \frac{{\partial^{2} \pi_{rm} }}{{\partial t_{rm}^{2} }} = - \frac{{2\left( {1 - \emptyset } \right)}}{K}\left( {\frac{{\alpha_{1} + \alpha_{2} }}{2} + \left( {\gamma - \beta } \right)w_{rm} } \right)^{2} < 0 $$
(2a)

The second principle minor is positive when:

$$ \begin{aligned} & \left( {\left( {2m_{rm} - 2r_{rm} - 4t_{rm} + a_{1} + a_{2} } \right)\frac{{\left( {1 - \emptyset } \right)\left( {\gamma - \beta } \right)\left( {\frac{{\alpha_{1} + \alpha_{2} }}{2} + \left( {\gamma - \beta } \right)w_{rm} } \right)}}{K}} \right)^{2} \\ & \quad < \left( { - \frac{{2\left( {1 - \emptyset } \right)}}{K}\left( {\frac{{\alpha_{1} + \alpha_{2} }}{2} + \left( {\gamma - \beta } \right)w_{rm} } \right)^{2} } \right) \\ & \quad \quad \times \left( {2\left( {\gamma - \beta } \right) + \frac{{\left( {m_{rm} - r_{rm} - t_{rm} } \right)\left( {1 - \emptyset } \right)\left( {2t_{rm} - a_{1} - a_{2} } \right)\left( {\gamma - \beta } \right)^{2} }}{K} + \frac{{\omega \left( {\gamma - \beta } \right)^{2} }}{2\beta }} \right) \\ \end{aligned} $$
(3a)

The above condition is numerically checked to ensure that it is always positive under a wide range of parameters and all the test problems as well.

Appendix B

$$ Z\left( 1 \right) = \frac{{2\beta m_{rm} \left( {\gamma - \beta } \right) - \beta \left( {\alpha_{1} + \alpha_{2} } \right)}}{2\beta - \gamma } - \frac{{\omega \left( {\beta \gamma - \beta^{2} } \right)\left( {\alpha_{1} + \alpha_{2} } \right)}}{{\left( {2\beta - \gamma } \right)^{2} }} $$
(1b)
$$ Z\left( 2 \right) = - \frac{{2\beta^{2} \left( {\gamma - \beta } \right)\left( {1 - \emptyset^{2} } \right)\left( {\alpha_{1} + \alpha_{2} } \right)}}{{K\left( {2\beta - \gamma } \right)^{2} }} $$
(2b)
$$ Z\left( 3 \right) = \frac{{4\beta \left( {\gamma - \beta } \right)}}{2\beta - \gamma } + \frac{{2\omega \left( {\beta \gamma - \beta^{2} } \right)\left( {\gamma - \beta } \right)}}{{\left( {2\beta - \gamma } \right)^{2} }} $$
(3b)
$$ Z\left( 4 \right) = \frac{{4\beta^{2} \left( {\gamma - \beta } \right)^{2} \left( {1 - \emptyset^{2} } \right)}}{{K\left( {2\beta - \gamma } \right)^{2} }} $$
(4b)
$$ Z\left( 5 \right) = \frac{{\left( {\frac{{m_{rm} - r_{rm} }}{2} + \frac{{a_{1} + a_{2} }}{4}} \right)\left( {m_{rm} - r_{rm} - \frac{{a_{1} + a_{2} }}{2}} \right)\left( {1 - \emptyset } \right)\left( {\gamma - \beta } \right)\left( {\alpha_{1} + \alpha_{2} } \right)}}{2K} $$
(5b)
$$ Z\left( 6 \right) = \frac{{\left( {\frac{{m_{rm} - r_{rm} }}{2} + \frac{{a_{1} + a_{2} }}{4}} \right)\left( {m_{rm} - r_{rm} - \frac{{a_{1} + a_{2} }}{2}} \right)\left( {1 - \emptyset } \right)\left( {\gamma - \beta } \right)^{2} }}{K} $$
(6b)
$$ Z\left( 7 \right) = \left( {1 - \emptyset^{2} } \right)\left( {\left( {\frac{{m_{rm} - r_{rm} }}{2} + \frac{{a_{1} + a_{2} }}{4}} \right) - a_{1} } \right) $$
(7b)
$$ Z\left( 8 \right) = \left( {1 - \emptyset^{2} } \right)\left( {\left( {\frac{{m_{rm} - r_{rm} }}{2} + \frac{{a_{1} + a_{2} }}{4}} \right) - a_{2} } \right) $$
(8b)
$$ Z\left( 9 \right) = \left( {1 - \emptyset } \right)\left( {\left( {\frac{{m_{rm} - r_{rm} }}{2} + \frac{{a_{1} + a_{2} }}{4}} \right) - a_{1} } \right) $$
(9b)
$$ Z\left( {10} \right) = \left( {1 - \emptyset } \right)\left( {\left( {\frac{{m_{rm} - r_{rm} }}{2} + \frac{{a_{1} + a_{2} }}{4}} \right) - a_{2} } \right) $$
(10b)
$$ U\left( 1 \right) = \alpha_{1} - \omega \alpha_{1} + \frac{\omega \gamma }{\beta }\alpha_{2} - m_{rm} \left( {\gamma - \beta } \right) $$
(11b)
$$ U\left( 2 \right) = 2\gamma - 2\omega \gamma $$
(12b)
$$ U\left( 3 \right) = \left( {\gamma - \beta } \right)\left( { - a_{1} + m_{rm} - r_{rm} } \right) $$
(13b)
$$ U\left( 4 \right) = \left( {\gamma - \beta } \right)\left( { - a_{2} + m_{rm} - r_{rm} } \right) $$
(14b)
$$ U\left( 5 \right) = 2\beta - \omega \beta - \frac{{\omega \gamma^{2} }}{\beta } $$
(15b)
$$ U\left( 6 \right) = \alpha_{2} - \omega \alpha_{2} + \frac{\omega \gamma }{\beta }\alpha_{1} - m_{rm} \left( {\gamma - \beta } \right) $$
(16b)
$$ U\left( 7 \right) = \left( {\alpha_{1} + \alpha_{2} } \right)\left( { - a_{1} + m_{rm} - r_{rm} } \right) $$
(17b)
$$ U\left( 8 \right) = \frac{2K}{1 - \emptyset } $$
(18b)
$$ U\left( 9 \right) = \left( {\alpha_{1} + \alpha_{2} } \right)\left( { - a_{2} + m_{rm} - r_{rm} } \right) $$
(19b)
$$ U\left( {10} \right) = U\left( 7 \right)\left( {\frac{{\left( {\left( {U\left( 5 \right)U\left( 8 \right)} \right) - \left( {U\left( 3 \right)^{2} } \right) - \left( {U\left( 4 \right)^{2} } \right)} \right) - \left( {\left( {U\left( 2 \right)U\left( 8 \right)} \right) + \left( {U\left( 3 \right)^{2} } \right) + \left( {U\left( 4 \right)^{2} } \right)} \right)}}{U\left( 5 \right)U\left( 8 \right)}} \right) $$
(20b)
$$ U\left( {11} \right) = U\left( 8 \right)\left( {\frac{{\left( {\left( {U\left( 5 \right)U\left( 8 \right)} \right) - \left( {U\left( 3 \right)^{2} } \right) - \left( {U\left( 4 \right)^{2} } \right)} \right) - \left( {\left( {U\left( 2 \right)U\left( 8 \right)} \right) + \left( {U\left( 3 \right)^{2} } \right) + \left( {U\left( 4 \right)^{2} } \right)} \right)}}{U\left( 5 \right)U\left( 8 \right)}} \right) $$
(21b)
$$ U\left( {12} \right) = U\left( 3 \right)\left( {\frac{{\left( {\left( {U\left( 1 \right)U\left( 8 \right)} \right) + \left( {U\left( 3 \right)U\left( 7 \right)} \right) + \left( {U\left( 4 \right)U\left( 9 \right)} \right)} \right) + \left( {\left( {U\left( 6 \right)U\left( 8 \right)} \right) + \left( {U\left( 3 \right)U\left( 5 \right)} \right) + \left( {U\left( 4 \right)U\left( 9 \right)} \right)} \right)}}{U\left( 5 \right)U\left( 8 \right)}} \right) $$
(22b)
$$ U\left( {13} \right) = U\left( 9 \right)\left( {\frac{{\left( {\left( {U\left( 5 \right)U\left( 8 \right)} \right) - \left( {U\left( 3 \right)^{2} } \right) - \left( {U\left( 4 \right)^{2} } \right)} \right) - \left( {\left( {U\left( 2 \right)U\left( 8 \right)} \right) + \left( {U\left( 3 \right)^{2} } \right) + \left( {U\left( 4 \right)^{2} } \right)} \right)}}{U\left( 5 \right)U\left( 8 \right)}} \right) $$
(23b)
$$ U\left( {14} \right) = U\left( 4 \right)\left( {\frac{{\left( {\left( {U\left( 1 \right)U\left( 8 \right)} \right) + \left( {U\left( 3 \right)U\left( 7 \right)} \right) + \left( {U\left( 4 \right)U\left( 9 \right)} \right)} \right) + \left( {\left( {U\left( 6 \right)U\left( 8 \right)} \right) + \left( {U\left( 3 \right)U\left( 5 \right)} \right) + \left( {U\left( 4 \right)U\left( 9 \right)} \right)} \right)}}{U\left( 5 \right)U\left( 8 \right)}} \right) $$
(24b)
$$ U\left( {15} \right) = \left( {\frac{{\left( {\left( {U\left( 1 \right)U\left( 8 \right)} \right) + \left( {U\left( 3 \right)U\left( 7 \right)} \right) + \left( {U\left( 4 \right)U\left( 9 \right)} \right)} \right)\left( {\left( {U\left( 5 \right)U\left( 8 \right)} \right) - \left( {U\left( 3 \right)^{2} } \right) - \left( {U\left( 4 \right)^{2} } \right)} \right)}}{{\left( {U\left( 5 \right)U\left( 8 \right)} \right)^{2} }}} \right) $$
(25b)
$$ U\left( {16} \right) = \left( {\frac{{\left( {\left( {U\left( 6 \right)U\left( 8 \right)} \right) + \left( {U\left( 3 \right)U\left( 5 \right)} \right) + \left( {U\left( 4 \right)U\left( 9 \right)} \right)} \right)\left( {\left( {U\left( 2 \right)U\left( 8 \right)} \right) + \left( {U\left( 3 \right)^{2} } \right) + \left( {U\left( 4 \right)^{2} } \right)} \right)}}{{\left( {U\left( 5 \right)U\left( 8 \right)} \right)^{2} }}} \right) $$
(26b)
$$ U\left( {17} \right) = \left( {\frac{{\left( {U\left( 5 \right)U\left( 8 \right)} \right) - \left( {U\left( 3 \right)^{2} } \right) - \left( {U\left( 4 \right)^{2} } \right)}}{{\left( {U\left( 5 \right)U\left( 8 \right)} \right)}}} \right)^{2} - \left( {\frac{{\left( {U\left( 2 \right)U\left( 8 \right)} \right) + \left( {U\left( 3 \right)^{2} } \right) + \left( {U\left( 4 \right)^{2} } \right)}}{{\left( {U\left( 5 \right)U\left( 8 \right)} \right)}}} \right)^{2} $$
(27b)
$$ U\left( {18} \right) = \left( {\frac{{\left( {\left( {U\left( 6 \right)U\left( 8 \right)} \right) + \left( {U\left( 3 \right)U\left( 5 \right)} \right) + \left( {U\left( 4 \right)U\left( 9 \right)} \right)} \right)\left( {\left( {U\left( 5 \right)U\left( 8 \right)} \right) - \left( {U\left( 3 \right)^{2} } \right) - \left( {U\left( 4 \right)^{2} } \right)} \right)}}{{\left( {U\left( 5 \right)U\left( 8 \right)} \right)^{2} }}} \right) $$
(28b)
$$ U\left( {19} \right) = \left( {\frac{{\left( {\left( {U\left( 1 \right)U\left( 8 \right)} \right) + \left( {U\left( 3 \right)U\left( 7 \right)} \right) + \left( {U\left( 4 \right)U\left( 9 \right)} \right)} \right)\left( {\left( {U\left( 2 \right)U\left( 8 \right)} \right) + \left( {U\left( 3 \right)^{2} } \right) + \left( {U\left( 4 \right)^{2} } \right)} \right)}}{{\left( {U\left( 5 \right)U\left( 8 \right)} \right)^{2} }}} \right) $$
(29b)

Appendix C (Proof of Theorem 4)

To prove the concavity of the third party collectors’ profit w.r.t. \( \theta_{1} \) and \( \theta_{2} \) under Collusion game structure, the Hessian matrix of \( \pi_{T} \left( {\theta_{1} ,\theta_{2} } \right) \) is as follows. If the Hessian matrix is negative definite, then \( \pi_{T} \left( {\theta_{1} ,\theta_{2} } \right) \) is concave w.r.t. \( \theta_{1} \) and \( \theta_{2} \).

$$ H\left( {\pi_{T} \left( {\theta_{1} ,\theta_{2} } \right)} \right) = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{T} }}{{\partial \theta_{1}^{2} }}} & {\frac{{\partial^{2} \pi_{T} }}{{\partial \theta_{1} \partial \theta_{2} }}} \\ {\frac{{\partial^{2} \pi_{T} }}{{\partial \theta_{2} \partial \theta_{1} }}} & {\frac{{\partial^{2} \pi_{T} }}{{\partial \theta_{2}^{2} }}} \\ \end{array} } \right] $$
(1c)

The first principal minor is negative:

$$ H_{11} = \frac{{\partial^{2} \pi_{T} }}{{\partial \theta_{1}^{2} }} = - 2\frac{K}{1 - \emptyset } < 0 $$
(2c)

The second principle minor is always positive:

$$ H_{22} = 4\frac{{K^{2} }}{{\left( {1 - \emptyset } \right)^{2} }} > 0 $$
(3c)

Appendix D (Proof of Theorem 5)

To prove the concavity of the retailers’ profit w.r.t. \( p_{1} \) and \( p_{2} \) under Collusion game structure, the Hessian matrix of \( \pi_{R} \left( {p_{1} , p_{2} } \right) \) is as follows. If the Hessian matrix is negative definite, then \( \pi_{R} \left( {p_{1} , p_{2} } \right) \) is concave w.r.t. \( p_{1} \) and \( p_{2} \).

$$ H\left( {\pi_{R} \left( {p_{1} , p_{2} } \right)} \right) = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{R} }}{{\partial p_{1}^{2} }}} & {\frac{{\partial^{2} \pi_{R} }}{{\partial p_{1} \partial p_{2} }}} \\ {\frac{{\partial^{2} \pi_{R} }}{{\partial p_{2} \partial p_{1} }}} & {\frac{{\partial^{2} \pi_{R} }}{{\partial p_{2}^{2} }}} \\ \end{array} } \right] $$
(1d)

The first principal minor is negative:

$$ H_{11} = \frac{{\partial^{2} \pi_{R} }}{{\partial p_{1}^{2} }} = - 2\beta < 0 $$
(2d)

The second principle minor is always positive, since the assumption \( \beta > \gamma . \)

$$ H_{22} = 4\left( {\beta^{2} - \gamma^{2} } \right) > 0 $$
(3d)

Appendix E (Proof of Theorem 6)

To prove the concavity of the remanufacturer’s profit w.r.t. \( w_{rm} \) and \( t_{rm} \) under Collusion game structure, the Hessian matrix of \( \pi_{rm} \left( {w_{rm} ,t_{rm} } \right) \) is investigated as follows. If the Hessian matrix is negative definite, then \( \pi_{rm} \left( {w_{rm} ,t_{rm} } \right) \) is concave w.r.t. \( w_{rm} \) and \( t_{rm} \).

$$ H\left( {\pi_{rm} \left( {w_{rm} ,t_{rm} } \right)} \right) = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{rm} }}{{\partial t_{rm}^{2} }}} & {\frac{{\partial^{2} \pi_{rm} }}{{\partial t_{rm} \partial w_{rm} }}} \\ {\frac{{\partial^{2} \pi_{rm} }}{{\partial w_{rm} \partial t_{rm} }}} & {\frac{{\partial^{2} \pi_{rm} }}{{\partial w_{rm}^{2} }}} \\ \end{array} } \right] $$
(1e)

The first principal minor is negative:

$$ H_{11} = \frac{{\partial^{2} \pi_{rm} }}{{\partial t_{rm}^{2} }} = - \frac{{2\left( {1 - \emptyset^{2} } \right)}}{K}\left( {\frac{{\beta \left( {\alpha_{1} + \alpha_{2} } \right)}}{2\beta - \gamma } + \frac{{2\beta \left( {\gamma - \beta } \right)}}{2\beta - \gamma }w_{rm} } \right)^{2} < 0 $$
(2e)

The second principle minor is positive when:

$$ \begin{aligned} & \left( {\left( {2m_{rm} - 2r_{rm} - 4t_{rm} + a_{1} + a_{2} } \right)\frac{{2\beta \left( {1 - \emptyset^{2} } \right)\left( {\gamma - \beta } \right)\left( {\frac{{\beta \left( {\alpha_{1} + \alpha_{2} } \right)}}{2\beta - \gamma } + \frac{{2\beta \left( {\gamma - \beta } \right)}}{2\beta - \gamma }w_{rm} } \right)}}{{K\left( {2\beta - \gamma } \right)}}} \right)^{2} \\ & < \left( { - \frac{{2\left( {1 - \emptyset^{2} } \right)}}{K}\left( {\frac{{\beta \left( {\alpha_{1} + \alpha_{2} } \right)}}{2\beta - \gamma } + \frac{{2\beta \left( {\gamma - \beta } \right)}}{2\beta - \gamma }w_{rm} } \right)^{2} } \right) \\ & \quad \times \left( {\frac{{4\beta \left( {\gamma - \beta } \right)}}{2\beta - \gamma } + \frac{{2\omega \left( {\beta \gamma - \beta^{2} } \right)\left( {\gamma - \beta } \right)}}{{\left( {2\beta - \gamma } \right)^{2} }} + \frac{{4\beta^{2} \left( {\gamma - \beta } \right)^{2} \left( {1 - \emptyset^{2} } \right)\left( {m_{rm} - r_{rm} - t_{rm} } \right)\left( {2t_{rm} - a_{1} - a_{2} } \right)}}{{K\left( {2\beta - \gamma } \right)^{2} }}} \right) \\ \end{aligned} $$
(3e)

Appendix F (Proof of Theorem 7)

To prove the concavity of the closed-loop supply chain’s profit w.r.t. \( \theta_{1} ,\theta_{2} ,p_{1} , \) and \( p_{2} \) under centralized decision-making structure, the Hessian matrix of \( \pi_{SC} \left( {\theta_{1} ,\theta_{2} ,p_{1} ,p_{2} } \right) \) is as follows. If the Hessian matrix is negative definite, then \( \pi_{SC} \left( {\theta_{1} ,\theta_{2} ,p_{1} ,p_{2} } \right) \) is concave w.r.t. \( \theta_{1} ,\theta_{2} ,p_{1} , \) and \( p_{2} \).

$$ H\left( {\pi_{SC} \left( {\theta_{1} ,\theta_{2} ,p_{1} ,p_{2} } \right)} \right)\left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{SC} }}{{\partial \theta_{1}^{2} }}} & {\frac{{\partial^{2} \pi_{SC} }}{{\partial \theta_{1} \partial \theta_{2} }}} & {\frac{{\partial^{2} \pi_{SC} }}{{\partial \theta_{1} \partial p_{1} }}} & {\frac{{\partial^{2} \pi_{SC} }}{{\partial \theta_{1} \partial p_{2} }}} \\ {\frac{{\partial^{2} \pi_{SC} }}{{\partial \theta_{2} \partial \theta_{1} }}} & {\frac{{\partial^{2} \pi_{SC} }}{{\partial \theta_{2}^{2} }}} & {\frac{{\partial^{2} \pi_{SC} }}{{\partial \theta_{2} \partial p_{1} }}} & {\frac{{\partial^{2} \pi_{SC} }}{{\partial \theta_{2} \partial p_{2} }}} \\ {\frac{{\partial^{2} \pi_{SC} }}{{\partial p_{1} \partial \theta_{1} }}} & {\frac{{\partial^{2} \pi_{SC} }}{{\partial p_{1} \partial \theta_{2} }}} & {\frac{{\partial^{2} \pi_{SC} }}{{\partial p_{1}^{2} }}} & {\frac{{\partial^{2} \pi_{SC} }}{{\partial p_{1} \partial p_{2} }}} \\ {\frac{{\partial^{2} \pi_{SC} }}{{\partial p_{2} \partial \theta_{1} }}} & {\frac{{\partial^{2} \pi_{SC} }}{{\partial p_{2} \partial \theta_{2} }}} & {\frac{{\partial^{2} \pi_{SC} }}{{\partial p_{2} \partial p_{1} }}} & {\frac{{\partial^{2} \pi_{SC} }}{{\partial p_{2}^{2} }}} \\ \end{array} } \right] $$
(1f)

where

$$ H_{11} = \frac{{\partial^{2} \pi_{SC} }}{{\partial \theta_{1}^{2} }} = - 2\frac{K}{1 - \emptyset } < 0 $$
(2f)

The second principle minor is always positive:

$$ H_{22} = 4\frac{{K^{2} }}{{\left( {1 - \emptyset } \right)^{2} }} > 0 $$
(3f)

The third principle minor is negative when:

$$ \begin{aligned} & \left[ {\left( {\left( {\gamma - \beta } \right)\left( { - a_{2} + m_{rm} - r_{rm} } \right)} \right)^{2} - \left( {\frac{2K}{1 - \emptyset }\left( {2\beta - \omega \beta - \frac{{\omega \gamma^{2} }}{\beta }} \right)} \right)} \right] \\ & \quad < \left( {\gamma - \beta } \right)\left( { - a_{1} + m_{rm} - r_{rm} } \right) \\ \end{aligned} $$
(4f)

The fourth principle minor is positive when:

$$ \begin{aligned} & \frac{2K}{1 - \emptyset }\left( {\left( {\gamma - \beta } \right)\left( { - a_{2} + m_{rm} - r_{rm} } \right)} \right)^{2} \left( {\left( {2\gamma - 2\omega \gamma } \right) + \frac{2K}{1 - \emptyset }} \right) \\ & \quad < \frac{2K}{1 - \emptyset }\left( {\left( {2\beta - \omega \beta - \frac{{\omega \gamma^{2} }}{\beta }} \right) + \left( {2\gamma - 2\omega \gamma } \right)} \right) \\ & \quad \quad \times \left[ {\left( {2\beta - \omega \beta - \frac{{\omega \gamma^{2} }}{\beta }} \right) - \left( {2\gamma - 2\omega \gamma } \right) - \left( {\left( {\gamma - \beta } \right)\left( { - a_{2} + m_{rm} - r_{rm} } \right)} \right)^{2} } \right] \\ \end{aligned} $$
(5f)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johari, M., Hosseini-Motlagh, SM. Coordination of social welfare, collecting, recycling and pricing decisions in a competitive sustainable closed-loop supply chain: a case for lead-acid battery. Ann Oper Res (2019). https://doi.org/10.1007/s10479-019-03292-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10479-019-03292-1

Keywords

Navigation