Skip to main content
Log in

Determining attribute weights to improve solution reliability and its application to selecting leading industries

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In multiple attribute decision analysis, many methods have been proposed to determine attribute weights. However, solution reliability is rarely considered in those methods. This paper develops an objective method in the context of the evidential reasoning approach to determine attribute weights which achieve high solution reliability. Firstly, the minimal satisfaction indicator of each alternative on each attribute is constructed using the performance data of each alternative. Secondly, the concept of superior intensity of an alternative is introduced and constructed using the minimal satisfaction of each alternative. Thirdly, the concept of solution reliability on each attribute is defined as the ordered weighted averaging (OWA) of the superior intensity of each alternative. Fourthly, to calculate the solution reliability on each attribute, the methods for determining the weights of the OWA operator are developed based on the minimax disparity method. Then, each attribute weight is calculated by letting it be proportional to the solution reliability on that attribute. A problem of selecting leading industries is investigated to demonstrate the applicability and validity of the proposed method. Finally, the proposed method is compared with other four methods using the problem, which demonstrates the high solution reliability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas, A. E. (2006). Maximum entropy utility. Operations Research, 54(2), 277–290.

    Article  Google Scholar 

  • Ahn, B. S., & Choi, S. H. (2012). Aggregation of ordinal data using ordered weighted averaging operator weights. Annals of Operations Research, 201, 1–16.

    Article  Google Scholar 

  • Ananda, J., & Herath, G. (2005). Evaluating public risk preferences in forest land-use choices using multi-attribute utility theory. Ecological Economics, 55, 408–419.

    Article  Google Scholar 

  • Aouni, B., Colapinto, C., & Torre, D. L. (2013). A cardinality constrained stochastic goal programming model with satisfaction functions for venture capital investment decision making. Annals of Operations Research, 205, 77–88.

    Article  Google Scholar 

  • Bottomley, P. A., & Doyle, J. R. (2001). A comparison of three weight elicitation methods: Good, better, and best. Omega, 29, 553–560.

    Article  Google Scholar 

  • Brito, A. J., & de Almeida, A. T. (2012). Modeling a multi-attribute utility newsvendor with partial backlogging. European Journal of Operational Research, 220, 820–830.

    Article  Google Scholar 

  • Butler, J., Morrice, D. J., & Mullarkey, P. W. (2001). A multiple attribute utility theory approach to ranking and selection. Management Science, 47(6), 800–816.

    Article  Google Scholar 

  • Chen, T. Y., & Li, C. H. (2010). Determining objective weights with intuitionistic fuzzy entropy measures: A comparative analysis. Information Science, 180, 4207–4222.

    Article  Google Scholar 

  • Chen, T. Y., & Li, C. H. (2011). Objective weights with intuitionistic fuzzy entropy measures and computational experiment analysis. Applied Soft Computing, 11, 5411–5423.

    Article  Google Scholar 

  • Daniels, R. L., & Keller, L. R. (1992). Choice-based assessment of utility functions. Organizational Behavior and Human Decision Process, 52, 524–543.

    Article  Google Scholar 

  • Davern, M. J., Mantena, R., & Stohr, E. A. (2008). Diagnosing decision quality. Decision Support Systems, 45, 123–139.

    Article  Google Scholar 

  • Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 38, 325–339.

    Article  Google Scholar 

  • Deng, H., Yeh, C. H., & Willis, R. J. (2000). Inter-company comparison using modified TOPSIS with objective weights. Computers and Operations Research, 27, 963–973.

    Article  Google Scholar 

  • Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The critic method. Computers and Operations Research, 22, 763–770.

    Article  Google Scholar 

  • Dyer, J. S., & Jia, J. M. (1998). Preference conditions for utility models: A risk-value perspective. Annals of Operations Research, 80, 167–182.

    Article  Google Scholar 

  • Farquhar, P. H. (1984). Utility assessment methods. Management Science, 30(11), 1283–1300.

    Article  Google Scholar 

  • Gao, J., Zhang, C., Wang, K., & Ba, S. (2012). Understanding online purchase decision making: The effects of unconscious thought, information quality, and information quantity. Decision Support Systems, 53, 772–781.

    Article  Google Scholar 

  • Guo, M., Yang, J. B., Chin, K. S., & Wang, H. W. (2007). Evidential reasoning based preference programming for multiple attribute decision analysis under uncertainty. European Journal of Operational Research, 182, 1294–1312.

    Article  Google Scholar 

  • Hershey, J. C., & Schoemaker, P. (1985). Probability versus certainty equivalence methods in utility measurement: Are they equivalent? Management Science, 31, 1213–1231.

    Article  Google Scholar 

  • Horowitz, I., & Zappe, C. (1995). The linear programming alternative to policy capturing for eliciting criteria weights in the performance appraisal process. Omega, 23(6), 667–676.

    Article  Google Scholar 

  • Horsky, D., & Rao, M. R. (1984). Estimation of attribute weights from preference comparisons. Management Science, 30, 801–822.

    Article  Google Scholar 

  • Kainuma, Y., & Tawara, N. (2006). A multiple attribute utility theory approach to lean and green supply chain management. International Journal of Production Economics, 101, 99–108.

    Article  Google Scholar 

  • Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives preferences and value tradeoffs. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kocher, M. G., & Sutter, M. (2006). Time is money-Time pressure, incentives, and the quality of decision-making. Journal of Economic Behavior and Organization, 61, 375–392.

    Article  Google Scholar 

  • Malhotra, V., Lee, M. D., & Khurana, A. (2007). Domain experts influence decision quality: Towards a robust method for their identification. Journal of Petroleum Science and Engineering, 57, 181–194.

    Article  Google Scholar 

  • Maria de Miranda Mota, C., & Teixeira de Almeida, A. (2012). A multicriteria decision model for assigning priority classes to activities in project management. Annals of Operations Research, 199, 361–372.

    Article  Google Scholar 

  • O’Hagan, M. (1988). Aggregating template or rule antecedents in real-time expert systems with fuzzy set logic. Proceedings of the 22nd annual IEEE Asilomar conference on signals, systems and computers (pp. 681–689). California: Pacific Grove.

    Google Scholar 

  • Park, D. G., Kwun, Y. C., Park, J. H., & Park, I. Y. (2009). Correlation coefficient of interval-valued intuitionistic fuzzy sets and its application to multiple attribute group decision making problems. Mathematical and Computer Modelling, 50(9–10), 1279–1293.

    Article  Google Scholar 

  • Raghunathan, S. (1999). Impact of information quality and decision-maker quality on decision quality: A theoretical model and simulation analysis. Decision Support Systems, 26, 275–286.

    Article  Google Scholar 

  • Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15, 234–281.

    Article  Google Scholar 

  • Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton University Press.

    Google Scholar 

  • Shirland, L. E., Jesse, R. R., Thompson, R. L., & Iacovou, C. L. (2003). Determining attribute weights using mathematical programming. Omega, 31, 423–437.

    Article  Google Scholar 

  • Socorro García-Cascales, M., Teresa Lamata, M., & Miguel Sánchez-Lozano, J. (2012). Evaluation of photovoltaic cells in a multi-criteria decision making process. Annals of Operations Research, 199, 373–391.

    Article  Google Scholar 

  • Takeda, E., Cogger, K. O., & Yu, P. L. (1987). Estimating criterion weights using eigenvectors: A comparative study. European Journal of Operational Research, 29, 360–369.

    Article  Google Scholar 

  • Wang, J. M. (2012). Robust optimization analysis for multiple attribute decision making problems with imprecise information. Annals of Operations Research, 197, 109–122.

    Article  Google Scholar 

  • Wang, Y. M. (1998). Using the method of maximizing deviations to make decision for multi-indices. System Engineering and Electronics, 7(24–26), 31.

    Google Scholar 

  • Wang, Y. M., & Chin, K. S. (2011). The use of OWA operator weights for cross-efficiency aggregation. Omega, 39, 493–503.

    Article  Google Scholar 

  • Wang, Y. M., & Luo, Y. (2010). Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Mathematical and Computer Modelling, 51, 1–12.

    Article  Google Scholar 

  • Wang, Y. M., & Parkan, C. (2005). A minimax disparity approach for obtaining OWA operator weights. Information Sciences, 175, 20–29.

    Article  Google Scholar 

  • Wang, Y. M., Yang, J. B., & Xu, D. L. (2006a). Environmental impact assessment using the evidential reasoning approach. European Journal of Operational Research, 174(3), 1885–1913.

    Article  Google Scholar 

  • Wang, Y. M., Yang, J. B., Xu, D. L., & Chin, K. S. (2006b). The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees. European Journal of Operational Research, 175(1), 35–66.

    Article  Google Scholar 

  • Williams, M. L., Dennis, A. R., Stam, A., & Aronson, J. E. (2007). The impact of DSS use and information load on errors and decision quality. European Journal of Operational Research, 176, 468–481.

    Article  Google Scholar 

  • Winston, W. (2011). Operations research: Applications and algorithms. Beijing: Tsinghua University Press.

    Google Scholar 

  • Xu, D. L. (2012). An introduction and survey of the evidential reasoning approach for multiple criteria decision analysis. Annals of Operations Research, 195, 163–187.

    Article  Google Scholar 

  • Xu, X. Z. (2004). A note on the subjective and objective integrated approach to determine attribute weights. European Journal of Operational Research, 156, 530–532.

    Article  Google Scholar 

  • Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man, and Cybernetics, 18, 183–190.

    Article  Google Scholar 

  • Yang, J. B. (2001). Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties. European Journal of Operational Research, 131, 31–61.

    Article  Google Scholar 

  • Yang, J. B., Wang, Y. M., Xu, D. L., & Chin, K. S. (2006). The evidential reasoning approach for MADA under both probabilistic and fuzzy uncertainties. European Journal of Operational Research, 171, 309–343.

    Article  Google Scholar 

  • Zadeh, L. A. (1994a). Soft computing and fuzzy logic. IEEE Software, 11(6), 48–56.

    Article  Google Scholar 

  • Zadeh, L. A. (1994b). Fuzzy logic, neural networks, and soft computing. Communications of the ACM, 37(3), 77–84.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the State Key Program of National Natural Science Foundation of China (No. 71131002), the National Key Basic Research Program of China (No. 2013CB329603), the National Natural Science Foundation of China (No. 71201043), the Humanities and Social Science Foundation of Ministry of Education in China (No. 12YJC630046), and the Natural Science Foundation of Anhui Province of China (No. 1208085QG130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Fu.

Appendix: Proof of Property 1 and Theorems 1–4

Appendix: Proof of Property 1 and Theorems 1–4

1.1 Proof of Property 1

Property 1

Given \(\Delta V(e_i (b_l ))\) (\(i = 1, {\ldots }, L, l = 1, {\ldots }, M-1)\) in Eq. (18), it is satisfied that

$$\begin{aligned}&\Delta V(e_i (b_1 ))\ge \cdots \ge \Delta V(e_i (b_{M-1} )), \end{aligned}$$
(20)
$$\begin{aligned}&\Delta V(e_i (b_x ))= \cdots =\Delta V(e_i (b_y )) \end{aligned}$$
$$\begin{aligned}&\hbox {if }V(e_i (b_x ))= \cdots =V(e_i (b_y )) \quad \hbox { for }\quad x<y \quad \hbox { and }x,y\in \{1, \ldots ,M-1\}, \end{aligned}$$
(21)
$$\begin{aligned}&0\le \Delta V(e_i (b_l ))\le M-l, \quad \hbox {and} \end{aligned}$$
(22)
$$\begin{aligned}&0\le Q\left( {e_i } \right) \le M-1. \end{aligned}$$
(23)

Proof

From the condition of \(V(e_{i}(b_{1}))\) \(\ge {\cdots } \ge V(e_{i}(b_{M}))\) specified in Definition 4, we can deduce that \((V(e_i (b_l ))-V(e_i (b_m )))/2 \ge \) 0 for \(m=l\) + 1, ..., \(M\). Using Eq. (18), we can further reason that \(\Delta V(e_i (b_1 ))=(V(e_i (b_1 ))-V(e_i (b_2 )))/2+\sum _{m=3}^M {(V(e_i (b_1 ))-V(e_i (b_m )))/2} =(V(e_i (b_1 ))-V(e_i (b_2 )))/2+\Delta V(e_i (b_2 )) \ge \Delta V(e_i (b_2 ))\). Similarly, \(\Delta V(e_i (b_2 )) \ge \) ... \(\ge \Delta V(e_i (b_{M-1} ))\) can be inferred. Therefore, Eq. (20) holds.

Given \(x\) and \(y\) such that \(x < y\) and \(x\), \(y \in \) {1, ..., \(M-1\)}, because \(V(e_{i}(b_{x})) = V(e_{i}(b_{x+1}))\), we can deduce from Eq. (18) that \(\Delta V(e_i (b_x ))=(V(e_i (b_x ))-V(e_i (b_{x+1} )))/2+\sum _{m=x+2}^M {(V(e_i (b_x ))-V(e_i (b_m )))/2} =\sum _{m=x+2}^M {(V(e_i (b_{x+1} ))-V(e_i (b_m )))/2} =\Delta V(e_i (b_{x+1} ))\). Similarly, we can infer from \(V(e_{i}(b_{x})) = {\ldots } = V(e_{i}(b_{y}))\) that \(\Delta V(e_i (b_x )) = {\ldots } = \Delta V(e_i (b_y ))\), which verifies Eq. (21).

Because \(V(e_{i}(b_{l}))\) \(\in \) [\(-\)1, 1] (\(i = 1, {\ldots }, L, l = 1, {\ldots }, M-1)\), as presented in Sect. 3.1, \((V(e_i (b_l ))-V(e_i (b_m )))/2\) for \(m=l + 1, {\ldots }, M\) is limited to [0, 1]. This can deduce from Eq. (18) that \(\Delta V(e_i (b_l ))\) (\(l = 1, {\ldots }, M-1)\) is limited to [0, \(M-l\)] (\(l = 1, {\ldots }, M-1)\). As a result, Eq. (22) holds.

Equations (20) and (22) show that \(M-1 \ge \Delta V(e_i (b_1 )) \ge \) ... \(\ge \Delta V(e_i (b_{M-1} )) \ge \) 0. In this situation, it can be derived that \(\sum _{l=1}^{M-1} {\theta _l \cdot \Delta V(e_i (b_l ))} \ge \) 0 and \(\sum _{l=1}^{M-1} {\theta _l \cdot \Delta V(e_i (b_l ))} \le \sum _{l=1}^{M-1} {\theta _l \cdot \Delta V(e_i (b_1 ))} =\Delta V(e_i (b_1 )) \le M-1\) on the condition that 0 \(\le \) \(\theta _{l} \le \) 1 (\(l = 1, {\ldots }, M-1)\) and \(\sum _{l=1}^{M-1} {\theta _l } \)=1, as specified in Definition 4. Therefore, Eq. (23) holds. \(\square \)

1.2 Proof of Theorem 1

Theorem 1

It is assumed that \(\theta _{l}\) (\(l = 1, {\ldots }, M-1)\) represents the weight of \(\Delta V(e_i (b_l ))\) (\(i = 1, {\ldots }, L, l = 1, {\ldots }, M-1)\) for calculating \(Q(e_{i})\) in Eq. (19) and \(\Delta d\) is defined in Eq. (25). Given the largest weight \(\theta _{1}\), \(\theta _{l}\) (\(l = 2, {\ldots }, M-1)\) is determined by \(\theta _1 -(l-1)d_1 +\frac{(l-2)\cdot (l-1)}{2}\Delta d\) using the minimax disparity method based on Assumption 1, i.e., minimizing the maximum disparity between \(\theta _{l}\) and \(\theta _{l+1}\) (\(l = 1, {\ldots }, M-2\)), where \(d_{1}=\frac{4(M-1)\theta _1 -6}{(M-2)(M-1)}+\varepsilon \), \(\Delta d=\frac{6(M-1)\theta _1 -12}{(M-3)(M-2)(M-1)}+\frac{3\varepsilon }{M-3}\), and \(\varepsilon \) is a small positive number close to zero.

Proof

The requirement of \((\theta _l -\theta _{l+1} )-(\theta _{l+1} -\theta _{l+2} )=d_l -d_{l+1} =\Delta d >\) 0 (\(l = 1, {\ldots }, M-3\)) in Assumption 1 can deduce that \(\theta _{l}=\theta _1 -(l-1)d_1 +(1+{\ldots }+(l-2))\Delta d=\theta _1 -(l-1)d_1 +\frac{(l-2)\cdot (l-1)}{2}\Delta d\) (\(l = 2, {\ldots }, M-1)\). Then, we have

$$\begin{aligned} \sum \limits _{l=1}^{M-1} {\theta _l }&= (M-1)\theta _1 -(1+{\ldots }+(M-1-1))d_1 +\sum \limits _{l=3}^{M-1} {\frac{(l-2)\cdot (l-1)}{2}\Delta d} \\&= (M-1)\theta _1 -\frac{(M-2)\cdot (M-1)}{2}d_1 +\,\frac{1}{2}\sum \limits _{l=3}^{M-1} {(l^{2}-3l+2)\Delta d} \\&= (M-1)\theta _1 -\frac{(M-2)\cdot (M-1)}{2}d_1 \\&\quad +\,\frac{1}{2}\left( \frac{1}{6}(M-1)(M-1+1)(2(M-1)+1)-(1^{2}+2^{2})\right. \\&\quad -\,3\left. \left( \frac{1}{2}(M-1)M-(1+2)\right) +2(M-1-3+1)\right) \Delta d \\&= (M-1)\theta _1 -\frac{(M-2)(M-1)}{2}d_1 +\frac{(M-3)(M-2)(M-1)}{6}\Delta d \\&= 1, \end{aligned}$$

which can further reason that \(\Delta d=\frac{6-6(M-1)\theta _1 +3(M-2)(M-1)d_1 }{(M-3)(M-2)(M-1)}\).

The constraint of \(\theta _{1} >\) ... \(>\) \(\theta _{M-1} >\) 0 in Assumption 1 needs that \(\theta _{M-1}=\theta _1 -(M-2)d_1 +\frac{(M-3)\cdot (M-2)}{2}\Delta d >\) 0, which is combined with \(\Delta d=\frac{6-6(M-1)\theta _1 +3(M-2)(M-1)d_1 }{(M-3)(M-2)(M-1)}\) to deduce that 6-6(\(M-1)\theta _{1}\)+3(\(M-2\))(\(M-1)d_{1} >\) 2(\(M-2\))(\(M-1)d_{1}\)-2(\(M-1)\theta _{1}\), i.e., \(d_{1} > \frac{4(M-1)\theta _1 -6}{(M-2)(M-1)}\). Following the principle of the minimax disparity method, \(d_{l}\) (\(l = 1, {\ldots }, M-2\)) should be minimized. Due to the requirement of \(d_l -d_{l+1} =\Delta d >\) 0 (\(l = 1, {\ldots }, M-3\)) in Assumption 1, the minimum \(d_{1}\) results in the minimum \(d_{l}\) (\(l = 2, {\ldots }, M-2\)). Therefore, we obtain the minimal \(d_{1}=\frac{4(M-1)\theta _1 -6}{(M-2)(M-1)}+\varepsilon \) with the help of a small positive number \(\varepsilon \) close to zero. In this situation, it can be derived from \(\Delta d=\frac{6-6(M-1)\theta _1 +3(M-2)(M-1)d_1 }{(M-3)(M-2)(M-1)}\) that \(\Delta d=\frac{6(M-1)\theta _1 -12}{(M-3)(M-2)(M-1)}+\frac{3\varepsilon }{M-3}\). \(\square \)

1.3 Proof of Theorem 2

Theorem 2

On the assumption that \(\theta _{l}\) (\(l = 1, {\ldots }, M-1)\) represents the weight of \(\Delta V(e_i (b_l ))\) (\(i = 1, {\ldots }, L, l = 1, {\ldots }, M-1)\) for calculating \(Q(e_{i})\) in Eq. (19), the determination of \(\theta _{l}\) (\(l = 2, {\ldots }, M-1)\) in Theorem 1 based on Assumption 1 requires that \(\frac{4-(M-2)(M-1)\varepsilon }{2(M-1)} <\) \(\theta _{1} < \frac{3-(M-2)(M-1)\varepsilon }{M-1}\) where \(\varepsilon \) is a small positive number close to zero.

Proof

The determination of \(\theta _{l}\) (\(l = 1, {\ldots }, M-1)\) by Theorem 1 depends on Assumption 1, so the constraints in Eqs. (24)–(26) are satisfied when \(\theta _{1}\) is given.

By using Theorem 1, we can know that \(d_{1}=\frac{4(M-1)\theta _1 -6}{(M-2)(M-1)}+\varepsilon \) and \(\Delta d=\frac{6(M-1)\theta _1 -12}{(M-3)(M-2)(M-1)}+\frac{3\varepsilon }{M-3}\) where \(\varepsilon \) is a small positive number close to zero. The requirements of \(d_{1} >\) 0 and \(\Delta d >\) 0 in Eqs. (24)–(26) deduce that 4(\(M-1)\theta _{1}\)-6+(\(M-2\))(\(M-1)\varepsilon \) \(>\) 0 and 6(\(M-1)\theta _{1}\)-12+3(\(M-2\))(\(M-1)\varepsilon \) \(>\) 0, i.e., \(\theta _{1} > \frac{6-(M-2)(M-1)\varepsilon }{4(M-1)}\) and \(\theta _{1} > \frac{4-(M-2)(M-1)\varepsilon }{2(M-1)}\). As \(\frac{6-(M-2)(M-1)\varepsilon }{4(M-1)}<\frac{4-(M-2)(M-1)\varepsilon }{2(M-1)}\) when \(\varepsilon \) is sufficiently close to zero, we can obtain that \(\theta _{1} > \frac{4-(M-2)(M-1)\varepsilon }{2(M-1)}\). On the other hand, it can be derived from \(d_l -d_{l+1} =\Delta d >\) 0 (\(l = 2, {\ldots }, M-3\)) in Eq. (25) that \(d_{l}=d_1 -(l-1)\Delta d >\) 0 (\(l = 2, {\ldots }, M-2\)), i.e., \(d_{1} > (l-1)\Delta d\) (\(l = 2, {\ldots }, M-2\)). When \(d_{M-2}=d_1 -(M-3)\Delta d >\) 0, \(d_{1} > (l-1)\Delta d\) (\(l = 2, {\ldots }, M-2\)) is clearly satisfied. From \(d_{M-2} >\) 0, we can obtain that \(d_{1}=\frac{4(M-1)\theta _1 -6}{(M-2)(M-1)}+\varepsilon > (M-3)\Delta d=\frac{6(M-1)\theta _1 -12+3(M-2)(M-1)\varepsilon }{(M-2)(M-1)}\), i.e., \(\theta _{1} < \frac{3-(M-2)(M-1)\varepsilon }{M-1}\). Therefore, \(\theta _{1}\) is limited to (\(\frac{4-(M-2)(M-1)\varepsilon }{2(M-1)}\), \(\frac{3-(M-2)(M-1)\varepsilon }{M-1})\). \(\square \)

1.4 Proof of Theorem 3

Theorem 3

Let \(\theta _{l}\) (\(l = 1, {\ldots }, M-1)\) denote the weight of \(\Delta V(e_i (b_l ))\) (\(i = 1, {\ldots }, L, l = 1, {\ldots }, M-1)\) for \(Q(e_{i})\) in Eq. (19). Given orness degree \(\alpha \) such that 0.5 \(<\) \(\alpha \) \(<\) 1, \(\theta _{1}\) and \(\theta _{l}\) (\(l = 2, {\ldots }, M-1)\) can be determined by \(\frac{(24\alpha -12)(M-2)+(M-2)(M-1)M\varepsilon }{2(M-1)M}\) and \(\theta _1 -(l-1)d_1 +\frac{(l-2)\cdot (l-1)}{2}\Delta d\) (\(l = 2, {\ldots }, M-1)\), where \(d_{1}=\frac{2(24\alpha -12)(M-2)-6M}{(M-2)(M-1)M}+3\varepsilon \), \(\Delta d=\frac{3(24\alpha -12)(M-2)-12M}{(M-3)(M-2)(M-1)M}+\frac{6\varepsilon }{M-3}\), and \(\varepsilon \) is a small positive number close to zero.

Proof

According to Eq. (1), the orness degree for \(Q(e_{i})\) in Eq. (19) is calculated as

$$\begin{aligned} \alpha&= \frac{1}{(M-1)-1}\sum \limits _{l=1}^{M-1} {(M-1-l)\theta _l } \\&= \frac{1}{M-2}((M-2)\theta _1 +(M-3)(\theta _1 -d_1 )+\sum \limits _{l=3}^{M-1} {(M-1-l)\theta _l } ). \end{aligned}$$

Theorem 1 indicates that \(\theta _{l}=\theta _1 -(l-1)d_1 +\frac{(l-2)\cdot (l-1)}{2}\Delta d\) (\(l = 2, {\ldots }, M-1)\), with which we can obtain that

$$\begin{aligned} \alpha&= \frac{1}{M-2}((M-2)\theta _1 +(M-3)(\theta _1 -d_1 )+(M-3)(M-1)\theta _1 -\left( \frac{(M-1)M}{2}-3\right) \theta _1 \\&\quad +\left( \frac{1}{6}(M-1)M(2M-1)-5-M\left( \frac{(M-1)M}{2}-3\right) +(M-3)(M-1)\right) d_1\\&\quad +\sum \limits _{l=3}^{M-1} {\frac{1}{2}(M-1-l)(l-2)(l-1)\Delta d)} . \end{aligned}$$

Suppose that \(\alpha _{1} = (\frac{1}{6}(M-1)M(2M-1)-5-M(\frac{(M-1)M}{2}-3)+(M-3)(M-1))d_{1}\) and \(\alpha _{2}=\sum _{l=3}^{M-1} {\frac{1}{2}(M-1-l)(l-2)(l-1)\Delta d} \), then it is derived that

$$\begin{aligned} \alpha _{1}&= \left( \frac{1}{6}(M-1)M(2M-1)-\frac{1}{2}(M-1)M^{2}+(M-3)(M-1)+3M-5\right) d_1 \\&= \left( \frac{1}{3}M^{3}-\frac{1}{6}M^{2}-\frac{1}{3}M^{2}+\frac{1}{6}M-\frac{1}{2}M^{3}+\frac{3}{2}M^{2}-M-2\right) d_1 \\&= -\frac{1}{6}(M^{3}-6M^{2}+5M+12)d_1 \\&= -\frac{1}{6}(M(M-3)^{2}-4(M-3))d_1 \\&= -\frac{1}{6}(M-3)(M^{2}-3M-4)d_1 \\&= -\frac{1}{6}(M-3)(M-4)(M+1)d_1 \\ \end{aligned}$$

and

$$\begin{aligned} \alpha _{2}&= \frac{\Delta d}{2}\sum \limits _{l=3}^{M-1} {(M-1-l)(l^{2}-3l+2)} \\&= \frac{\Delta d}{2}\sum \limits _{l=3}^{M-1} {((M-1)l^{2}-3l(M-1)+2(M-1)-l^{3}+3l^{2}-2l)} \\&= \frac{\Delta d}{2}\sum \limits _{l=3}^{M-1} {(-l^{3}+(M+2)l^{2}+(1-3M)l+2(M-1))} \\&= \frac{\Delta d}{2}\left( -\left( \frac{(M-1)^{2}M^{2}}{4}-1-2^{3}\right) +(M-2)\left( \frac{(M-1)M(2M-1)}{6}\right. -1-2^{2}\right) \\&\left. +(1-3M)\left( \frac{1}{2}(M-1)M-1-2\right) +2(M-1)(M-1-3+1)\right) \\&= \frac{\Delta d}{2}\Bigg (-\frac{(M-1)^{2}M^{2}}{4}+\frac{(M+2)(M-1)M(2M-1)}{6}+\frac{(1-3M)(M-1)M}{2}\\&\quad +\,2(M-1)(M-3)+(4M-4)\Bigg )\\&= \frac{\Delta d}{2}(M-1)\left( -\frac{(M-1)M^{2}}{4}+\frac{(M+2)M(2M-1)}{6}+\frac{(1-3M)M}{2}+2M-2\right) \\&= \frac{\Delta d}{2}(M-1)\left( \frac{(M-1)}{4}(8-M^{2})+\frac{M}{6}\left( (M+2)(2M-1)+3(1-3M)\right) \right) \\&= \frac{\Delta d}{24}(M-1)(3(M-1)(8-M^{2})+2M(2M^{2}-6M+1))\\&= \frac{\Delta d}{24}(M-1)(M^{3}-9M^{2}+26M-24)\\&= \frac{\Delta d}{24}(M-4)(M-3)(M-2)(M-1). \end{aligned}$$

Thus, we have \(\alpha = f(\alpha _{1}, \alpha _{2})=\frac{1}{M-2}((M-2)\theta _1 +(M-3)(\theta _1 -d_1 )+(M-3)(M-1)\theta _1 -(\frac{(M-1)M}{2}-3)\theta _1 + \alpha _{1} + \alpha _{2})=\frac{1}{M-2}(\frac{1}{2}(M-2)(M-1)\theta _1 -\frac{1}{6}(M-3)(M-2)(M-1)d_1 +\frac{1}{24}(M-4)(M-3)(M-2)(M-1)\Delta d)\), which can deduce that

$$\begin{aligned} \theta _{1}=\frac{24\alpha +4(M-3)(M-1)d_1 -(M-4)(M-3)(M-1)\Delta d}{12(M-1)}. \end{aligned}$$

From Theorem 1, we can know that \(d_{1}=\frac{4(M-1)\theta _1 -6}{(M-2)(M-1)}+\varepsilon \) and \(\Delta d=\frac{6(M-1)\theta _1 -12}{(M-3)(M-2)(M-1)}+\frac{3\varepsilon }{M-3}\). Then, \(\theta _{1}\) is calculated as \(\frac{(24\alpha -12)(M-2)+(M-2)(M-1)M\varepsilon }{2(M-1)M}\), which is used to determine \(d_{1}\) and \(\Delta d\) with \(d_{1}=\frac{2(24\alpha -12)(M-2)-6M}{(M-2)(M-1)M}+3\varepsilon \) and \(\Delta d=\frac{3(24\alpha -12)(M-2)-12M}{(M-3)(M-2)(M-1)M}+\frac{6\varepsilon }{M-3}\). \(\square \)

1.5 Proof of Theorem 4

Theorem 4

On the assumption that \(\theta _{l}\) (\(l = 1, {\ldots }, M-1)\) represents the weight of \(\Delta V(e_i (b_l ))\) (\(i = 1, {\ldots }, L, l = 1, {\ldots }, M-1)\) for calculating \(Q(e_{i})\) in Eq. (19), the determination of \(\theta _{l}\) (\(l = 2, {\ldots }, M-1)\) in Theorem 3 based on Assumption 1 requires that \(\frac{8M-12-(M-2)(M-1)M\varepsilon }{12M-24} <\) \(\alpha \) \(< \frac{6M-8-3(M-2)(M-1)M\varepsilon }{8M-16}\) where \(\alpha \) is the orness degree for \(Q(e_{i})\) and \(\varepsilon \) is a small positive number close to zero.

Proof

Theorems 2 and 3 show that \(\frac{4-(M-2)(M-1)\varepsilon }{2(M-1)} <\) \(\theta _{1} < \frac{3-(M-2)(M-1)\varepsilon }{M-1}\) and \(\theta _{1}=\frac{(24\alpha -12)(M-2)+(M-2)(M-1)M\varepsilon }{2(M-1)M}\).

The inequality \(\frac{4-(M-2)(M-1)\varepsilon }{2(M-1)} <\) \(\theta _{1}\) can deduce that 24(\(M-2\))\(\alpha \) - 12(\(M-2\)) + (\(M-2\))(\(M-1)M\varepsilon > 4M - (M-2)(M-1)M\varepsilon \), i.e., \(\alpha \) \(> \frac{8M-12-(M-2)(M-1)M\varepsilon }{12M-24}\). Similarly, from \(\theta _{1}=\frac{(24\alpha -12)(M-2)+(M-2)(M-1)M\varepsilon }{2(M-1)M} < \frac{3-(M-2)(M-1)\varepsilon }{M-1}\) it can be derived that 24(\(M-2)\alpha \) - 12(\(M-2) + (M-2)(M-1)M \varepsilon < 6M\) - 2(\(M-2)(M-1)M\varepsilon \), i.e., \(\alpha \) \(< \frac{6M-8-3(M-2)(M-1)M\varepsilon }{8M-16}\). In addition, we clearly have \(\frac{8M-12-(M-2)(M-1)M\varepsilon }{12M-24} >\) 0.5 and \(\frac{6M-8-3(M-2)(M-1)M\varepsilon }{8M-16} <\) 1. Therefore, \(\alpha \) is limited to (\(\frac{8M-12-(M-2)(M-1)M\varepsilon }{12M-24}\), \(\frac{6M-8-3(M-2)(M-1)M\varepsilon }{8M-16})\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Xu, DL. Determining attribute weights to improve solution reliability and its application to selecting leading industries. Ann Oper Res 245, 401–426 (2016). https://doi.org/10.1007/s10479-014-1657-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1657-8

Keywords

Navigation