Skip to main content
Log in

Stability of the rarefaction wave in the singular limit of a sharp interface problem for the compressible Navier-Stokes/Allen-Cahn system

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space. For the perturbations with small energy but possibly large oscillations of rarefaction wave solutions near phase separation, and where the strength of the initial phase field could be arbitrarily large, we prove that the solution of the Cauchy problem exists for all time, and converges to the centered rarefaction wave solution of the corresponding standard two-phase Euler equation as the viscosity and the thickness of the interface tend to zero. The proof is mainly based on a scaling argument and a basic energy method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels H, Fei M. Sharp interface limit for a Navier-Stokes/Allen-Cahn system with different viscosities. arXiv: 2201.09343v2

  2. Abels H, Garcke H, Grün G. Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math Models Methods Appl Sci, 2012, 22(3): 1150013

    Article  MathSciNet  Google Scholar 

  3. Abels H, Liu Y. Sharp interface limit for a Stokes/Allen-Cahn system. Arch Ration Mech Anal, 2018, 229(1): 417–502

    Article  MathSciNet  Google Scholar 

  4. Anderson D, Mcfadden G, Wheeler A. Diffuse-interface methods in fluid mechanics. Annu Rev Fluid Mech, 1998, 30: 139–165

    Article  MathSciNet  Google Scholar 

  5. Blesgen T. A generalization of the Navier-Stokes equations to two-phase flows. J Phys D: Appl Phys, 1999, 32(10): 1119–1123

    Article  Google Scholar 

  6. Chen M, Guo X. Global large solutions for a coupled compressible Navier-Stokes/Allen-Cahn system with initial vacuum. Nonlinear Anal: Real World Appl, 2017, 37: 350–373

    Article  MathSciNet  Google Scholar 

  7. Chen S, Wen H, Zhu C. Global existence of weak solution to compressible Navier-Stokes/Allen-Cahn system in three dimensions. J Math Anal Appl, 2019, 477(2): 1265–1295

    Article  MathSciNet  Google Scholar 

  8. Chen S, Zhu C. Blow-up criterion and the global existence of strong/classical solutions to Navier-Stokes/Allen-Cahn system. Z Angew Math Phys, 2021, 72(1): 14–24

    Article  MathSciNet  Google Scholar 

  9. Chen Y, He Q, Huang B, Shi X. Global strong solution to a thermodynamic compressible diffuse interface model with temperature-dependent heat conductivity in 1D. Math Methods Appl Sci, 2021, 44: 12945–12962

    Article  MathSciNet  Google Scholar 

  10. Chen Y, He Q, Huang B, Shi X. The Cauchy problem for non-isentropic compressible Navier-Stokes/Allen-Cahn system with degenerate heat-conductivity. arXiv: 2005.11205

  11. Chen Y, He Q, Shi X, Wang X. Sharp interface limit for compressible non-isentropic phase-field model. arXiv: 2102.00705

  12. Chen Y, Hong H, Shi X. Stability of the phase separation state for compressible Navier-Stokes/Allen-Cahn system. Acta Mathematicae Applicatae Sinica, 2023, 40: 45–74

    Article  MathSciNet  Google Scholar 

  13. Chen Y, Li H, Tang H. Optimal decay rate of the compressible Navier-Stokes/Allen-Cahn system in ℝ3. J Differential Equations, 2022, 334: 157–193

    Article  MathSciNet  Google Scholar 

  14. Ding S, Li Y, Luo W. Global solutions for a coupled compressible Navier-Stokes/Allen-Cahn system in 1D. J Math Fluid Mech, 2013, 15(2): 335–360

    Article  MathSciNet  Google Scholar 

  15. Ding S, Li Y, Tang Y. Strong solutions to 1D compressible Navier-Stokes/Allen-Cahn system with free boundary. Math Methods Appl Sci, 2019, 42(14): 4780–4794

    Article  MathSciNet  Google Scholar 

  16. Feireisl E, Petzeltová H, Rocca E, Schimperna G. Analysis of a phase-field model for two-phase compressible fluids. Math Models Methods Appl Sci, 20(7): 1129–1160

  17. Freistühler H. Phase transitions and traveling waves in compressible fluids. Arch Rational Mech Anal, 2014, 211: 189–204

    Article  MathSciNet  Google Scholar 

  18. Hensel S, Liu Y. The sharp interface limit of a Navier-Stokes/Allen-Cahn system with constant mobility: Convergence rates by a relative energy approach. arXiv: 2201.09423v2

  19. Huang F, Li M, Wang Y. Zero dissipation limit to rarefaction wave with vacuum for one-dimensional compressible Navier-Stokes equations. SIAM J Math Anal, 2012, 44(3): 1742–1759

    Article  MathSciNet  Google Scholar 

  20. Jiang S, Ni G, Sun W. Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids. SIAM J Math Anal, 2006, 38(2): 368–384

    Article  MathSciNet  Google Scholar 

  21. Jiang S, Su X, Xie F. Remarks on sharp interface limit for an incompressible Navier-Stokes and Allen-Cahn coupled system. arXiv: 2205.01301v1

  22. Kotschote M. Strong solutions of the Navier-Stokes equations for a compressible fluid of Allen-Cahn type. Arch Ration Mech Anal, 2012, 206(2): 489–514

    Article  MathSciNet  Google Scholar 

  23. Kotschote M. Spectral analysis for travelling waves in compressible two-phase fluids of Navier-Stokes-Allen-Cahn type. J Evol Equ, 2017, 17(1): 359–385

    Article  MathSciNet  Google Scholar 

  24. Liu T, Xin Z. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Commun Math Phys, 1988, 118(3): 451–465

    Article  MathSciNet  Google Scholar 

  25. Lowengrub J, Truskinovsky L. Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc Royal Soc A: Math Phys Eng Sci, 1998, 454: 2617–2654

    Article  MathSciNet  Google Scholar 

  26. Luo T, Yin H, Zhu C. Stability of the rarefaction wave for a coupled compressible Navier-Stokes/Allen-Cahn system. Math Methods Appl Sci, 2018, 41(12): 4724–4736

    Article  MathSciNet  Google Scholar 

  27. Luo T, Yin H, Zhu C. Stability of the composite wave for compressible Navier-Stokes/Allen-Cahn system. Math Models Methods Appl Sci, 2020, 30(2): 343–385

    Article  MathSciNet  Google Scholar 

  28. Matsumura A, Nishihara K. Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas. Jpn J Ind Appl Math, 1986, 3(1): 1–13

    Article  MathSciNet  Google Scholar 

  29. Matsumura A, Nishihara K. Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Commun Math Phys, 1992, 144(2): 325–335

    Article  MathSciNet  Google Scholar 

  30. Shi X, Yong Y, Zhang Y. Vanishing viscosity for non-isentropic gas dynamics with interacting shocks. Acta Math Sci, 2016, 36B(6): 1699–1720

    Article  MathSciNet  Google Scholar 

  31. Wang X, Wang Y. The sharp interface limit of a phase field model for moving contact line problem. Methods and Applications of Analysis, 2010, 14(3): 285–292

    MathSciNet  Google Scholar 

  32. Witterstein G. Sharp interface limit of phase change flows. Adv Math Sci Appl, 2010, 20(2): 585–629

    MathSciNet  Google Scholar 

  33. Xin Z. Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases. Commun Pure Appl Math, 1993, 46(5): 621–665

    Article  MathSciNet  Google Scholar 

  34. Xu X, Di Y, Yu H. Sharp-interface limits of a phase-field model with a generalized Navier slip boundary condition for moving contact lines. J Fluid Mech, 2018, 849: 805–833

    Article  MathSciNet  Google Scholar 

  35. Yan Y, Ding S, Li Y. Strong solutions for 1D compressible Navier-Stokes/Allen-Cahn system with phase variable dependent viscosity. J Differential Equations, 2022, 326: 1–48

    Article  MathSciNet  Google Scholar 

  36. Yin H, Zhu C. Asymptotic stability of superposition of stationary solutions and rarefaction waves for 1D Navier-Stokes/Allen-Cahn system. J Differential Equations, 2019, 266(11): 7291–7326

    Article  MathSciNet  Google Scholar 

  37. Zhao X. Global well-posedness and decay estimates for three-dimensional compressible Navier-Stokes-Allen-Cahn system. Proc Roy Soc Edinb A: Mathematics, 2022, 152(5): 1291–1322

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoding Shi.

Ethics declarations

Conflict of Interest The authors declare that they have no conflict of interest.

Additional information

Chen’s work was supported by the National Natural Science Foundation of China (12361044); Shi’s work was supported by the National Natural Science Foundation of China (12171024, 11971217, 11971020). This paper was also supported by the Academic and Technical Leaders Training Plan of Jiangxi Province (20212BCJ23027).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Huang, B. & Shi, X. Stability of the rarefaction wave in the singular limit of a sharp interface problem for the compressible Navier-Stokes/Allen-Cahn system. Acta Math Sci 44, 1507–1523 (2024). https://doi.org/10.1007/s10473-024-0417-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-024-0417-3

Key words

2020 MR Subject Classification

Navigation