Skip to main content
Log in

Nonlinear Stability of Rarefaction Waves to the Compressible Navier-Stokes Equations for a Reacting Mixture with Zero Heat Conductivity

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we study the time-asymptotically nonlinear stability of rarefaction waves for the Cauchy problem of the compressible Navier-Stokes equations for a reacting mixture with zero heat conductivity in one dimension. If the corresponding Riemann problem for the compressible Euler system admits the solutions consisting of rarefaction waves only, it is shown that its Cauchy problem has a unique global solution which tends time-asymptotically towards the rarefaction waves, while the initial perturbation and the strength of rarefaction waves are suitably small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ducomet B, Zlotnik A. On the large-time behavior of 1D radiative and reactive viscous flows for higher-order kinetics. Nonlinear Anal, 2005, 63(8): 1011–1033

    Article  MathSciNet  MATH  Google Scholar 

  2. Williams F A. Combustion Theory. Reading, MA: Addison-Wesley, 1965

    Google Scholar 

  3. Chen G Q. Global solutions to the compressible Navier-Stokes equations for a reacting mixture. SIAM J Math Anal, 1992, 23: 609–634

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen G Q, Hoff D, Trivisa K. On the Navier-Stokes equations for exothermically reacting compressible fluids. Acta Math Appl Sin Engl Ser, 2002, 18(1): 15–36

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen G Q, Hoff D, Trivisa K. Global solutions to a model for exothermically reacting, compressible flows with large discontinuous initial data. Arch Ration Mech Anal, 2003, 166(4): 321–358

    Article  MathSciNet  MATH  Google Scholar 

  6. Li S R. On one-dimensional compressible Navier-Stokes equations for a reacting mixture in unbounded domains. Z Angew Math Phys, 2017, 68(5): 106

    Article  MathSciNet  MATH  Google Scholar 

  7. Xu Z, Feng Z F. Nonlinear stability of rarefaction waves for one-dimensional compressible Navier-Stokes equations for a reacting mixture. Z Angew Math Phys, 2019, 70: 155

    Article  MathSciNet  MATH  Google Scholar 

  8. Peng L S. Asymptotic stability of a viscous contact wave for the one-dimensional compressible Navier-Stokes equations for a reacting mixture. Acta Math Sci, 2020, 40B(5): 1195–1214

    Article  MathSciNet  MATH  Google Scholar 

  9. Ducomet B. A model of thermal dissipation for a one-dimensional viscous reactive and radiative gas. Math Methods Appl Sci, 1999, 22(15): 1323–1349

    Article  MathSciNet  MATH  Google Scholar 

  10. Ducomet B, Zlotnik A. Lyapunov functional method for 1D radiative and reactive viscous gas dynamics. Arch Ration Mech Anal, 2005, 177(2): 185–229

    Article  MathSciNet  MATH  Google Scholar 

  11. Umehara M, Tani A. Global solution to the one-dimensional equations for a self-gravitating viscous radiative and reactive gas. J Differential Equations, 2007, 234(2): 439–463

    Article  MathSciNet  MATH  Google Scholar 

  12. Umehara M, Tani A. Global solvability of the free-boundary problem for one-dimensional motion of a self gravitating viscous radiative and reactive gas. Proc Japan Acad Ser A, 2008, 84(7): 123–128

    MathSciNet  MATH  Google Scholar 

  13. Jiang J, Zheng S. Global solvability and asymptotic behavior of a free boundary problem for the one-dimensional viscous radiative and reactive gas. J Math Phys, 2012, 53(12): 123704

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang J, Zheng S. Global well-posedness and exponential stability of solutions for the viscous radiative and reactive gas. Z Angew Math Phys, 2014, 65(4): 645–686

    Article  MathSciNet  MATH  Google Scholar 

  15. Liao Y K, Zhao H J. Global solutions to one-dimensional equations for a self-gravitating viscous radiative and reactive gas with density-dependent viscosity. Commun Math Sci, 2017, 15(5): 1423–1456

    Article  MathSciNet  MATH  Google Scholar 

  16. Liao Y K, Zhao H J. Global existence and large-time behavior of solutions to the Cauchy problem of one-dimensional viscous radiative and reactive gas. J Differential Equations, 2018, 265: 2076–2120

    Article  MathSciNet  MATH  Google Scholar 

  17. Liao Y K. Remarks on the Cauchy problem of the one-dimensional viscous radiative and reactive gas. Acta Math Sci, 2020, 40B(4): 1020–1034

    Article  MathSciNet  MATH  Google Scholar 

  18. He L, Liao Y K, Wang T, Zhao H J. One-dimensional viscous radiative gas with temperature dependent viscosity. Acta Math Sci, 2018, 38B(5): 1515–1548

    Article  MathSciNet  MATH  Google Scholar 

  19. Liao Y K, Wang T, Zhao H J. Global spherically symmetric flows for a viscous radiative and reactive gas in an exterior domain. J Differential Equations, 2019, 266: 6459–6506

    Article  MathSciNet  MATH  Google Scholar 

  20. Liao Y K. Global stability of rarefaction waves for a viscous radiative and reactive gas with temperature-dependent viscosity. Nonlinear Anal Real World Appl, 2020, 53: 103056

    Article  MathSciNet  MATH  Google Scholar 

  21. Gong G Q, He L, Liao Y K. Nonlinear stability of rarefaction waves for a viscous radiative and reactive gas with large initial perturbation. Sci China Math, 2021, 64(12): 2637–2666

    Article  MathSciNet  MATH  Google Scholar 

  22. Kawashima S, Okada M. Smooth global solutions for the one-dimensional equations in magnetohydrodynamics. Proc Japan Acad Ser A, 1982, 58(9): 384–387

    Article  MathSciNet  MATH  Google Scholar 

  23. Duan R J, Liu H X, Zhao H J. Nonlinear stability of rarefaction waves for the compressible Navier-Stokes equations with large initial perturbation. Trans Amer Math Soc, 2009, 361(1): 453–493

    Article  MathSciNet  MATH  Google Scholar 

  24. Matsumura A, Nishihara K. Asymptotics toward the rarefaction waves of a one-dimensional model system for compressible viscous gas. Japan J Appl Math, 1986, 3: 1–13

    Article  MathSciNet  MATH  Google Scholar 

  25. Matsumura A, Nishihara K. Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Commun Math Phys, 1992, 144: 325–335

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu T P. Nonlinear stability of shock waves for viscous conservation laws. Mem Amer Math Soc, 1985, 56: 1–108

    MathSciNet  Google Scholar 

  27. Goodman J. Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch Ration Mech Anal, 1986, 95: 325–344

    Article  MathSciNet  MATH  Google Scholar 

  28. Szepessy A, Xin Z P. Nonlinear stability of viscous shock waves. Arch Ration Mech Anal, 1993, 122: 53–103

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang F M, Matsumura A. Stability of a composite wave of two viscous shock waves for the full compressible Navier-Stokes equation. Commun Math Phys, 2009, 289: 841–861

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu T P, Xin Z P. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Commun Math Phys, 1988, 118: 451–465

    Article  MathSciNet  MATH  Google Scholar 

  31. Huang F M, Matsumura A, Xin Z P. Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations. Arch Ration Mech Anal, 2006, 179: 55–77

    Article  MathSciNet  MATH  Google Scholar 

  32. Huang F M, Matsumura A, Shi X D. On the stability of contact discontinuity for compressible Navier-Stokes equations with free boundary. Osaka J Math, 2004, 41: 193–210

    MathSciNet  MATH  Google Scholar 

  33. Hong H. Global stability of viscous contact wave for 1-D compressible Navier-Stokes equations. J Differential Equations, 2012, 252: 3482–3505

    Article  MathSciNet  MATH  Google Scholar 

  34. Huang F M, Zhao H J. On the global stability of contact discontinuity for compressible Navier-Stokes equations. Rend Sem Mat Univ Padova, 2003, 109: 283–305

    MathSciNet  MATH  Google Scholar 

  35. Huang F M, Li J, Matsumura A. Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimenional compressible Navier-Stokes system. Arch Ration Mech Anal, 2010, 197: 89–116

    Article  MathSciNet  MATH  Google Scholar 

  36. Huang B K, Liao Y K. Global stability of viscous contact wave with rarefaction waves for compressible Navier-Stokes equations with temperature-dependent viscosity. Math Models Methods Appl Sci, 2017, 27: 2321–2379

    Article  MathSciNet  MATH  Google Scholar 

  37. Huang F M, Wang T. Stability of superposition of viscous contact wave and rarefaction waves for compressible Navier-Stokes system. Indiana Univ Math J, 2016, 65(6): 1833–1875

    Article  MathSciNet  MATH  Google Scholar 

  38. Fan L L, Matsumura A. Asymptotic stability of a composite wave of two viscous shock waves for a one-dimensional system of non-viscous and heat-conductive ideal gas. J Differential Equations, 2015, 258: 1129–1157

    Article  MathSciNet  MATH  Google Scholar 

  39. Ma S X, Wang J. Decay rates to viscous contact waves for the compressible Navier-Stokes equations. J Math Phys, 2016, 57: 1–14

    Article  MathSciNet  Google Scholar 

  40. Fan L L, Gong G Q, Tang S J. Asymptotic stability of viscous contact wave and rarefaction waves for the system of heat-conductive ideal gas without viscosity. Anal Appl, 2019, 17(2): 211–234

    Article  MathSciNet  MATH  Google Scholar 

  41. Zheng L Y, Chen Z Z, Zhang S N. Asymptotic stability of a composite wave for the one-dimensional compressible micropolar fluid model without viscosity. J Math Anal Appl, 2018, 468: 865–892

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu T P, Zeng Y N. Compressible Navier-Stokes equations with zero heat conductivity. J Differential Equations, 1999, 153: 225–291

    Article  MathSciNet  MATH  Google Scholar 

  43. Duan R J, Ma H F. Global existence and convergence rates for the 3-D compressible Navier-Stokes equations without heat conductivity. Indiana Univ Math J, 2008, 57(5): 2299–2320

    Article  MathSciNet  MATH  Google Scholar 

  44. Hu J Y, Yin H. Nonlinear stability of rarefaction waves for the compressible Navier-Stokes equations with zero heat conductivity. Nonlinear Anal, 2018, 174: 242–277

    Article  MathSciNet  MATH  Google Scholar 

  45. Jin J, Rehman N, Jiang Q. Nonlinear stability of rarefaction waves for a compressible micropolar fluid model with zero heat conductivity. Acta Math Sci, 2020, 40B(5): 1352–1390

    Article  MathSciNet  MATH  Google Scholar 

  46. Duan R. Global solutions for a one-dimenional compressible micropolar fluid model with zero heat conductivity. J Math Anal Appl, 2018, 463: 477–495

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang Z A, Zhu C J. Stability of the rarefaction wave for the generalized KdV-Burgers equation. Acta Math Sci, 2002, 22B(3): 319–328

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhu C J. Asymptotic behavior of solution for p-system with relaxation. J Differential Equations, 2002, 180(2): 273–306

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lishuang Peng.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

This work was supported by the Beijing Natural Science Foundation (1182004, Z180007, 1192001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Li, Y. Nonlinear Stability of Rarefaction Waves to the Compressible Navier-Stokes Equations for a Reacting Mixture with Zero Heat Conductivity. Acta Math Sci 43, 2179–2203 (2023). https://doi.org/10.1007/s10473-023-0515-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-023-0515-7

Key words

2010 MR Subject Classification

Navigation