Skip to main content
Log in

An explanation on four new definitions of fractional operators

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

Fractional calculus has drawn more attentions of mathematicians and engineers in recent years. A lot of new fractional operators were used to handle various practical problems. In this article, we mainly study four new fractional operators, namely the Caputo-Fabrizio operator, the Atangana-Baleanu operator, the Sun-Hao-Zhang-Baleanu operator and the generalized Caputo type operator under the frame of the k-Prabhakar fractional integral operator. Usually, the theory of the k-Prabhakar fractional integral is regarded as a much broader than classical fractional operator. Here, we firstly give a series expansion of the k-Prabhakar fractional integral by means of the k-Riemann-Liouville integral. Then, a connection between the k-Prabhakar fractional integral and the four new fractional operators of the above mentioned was shown, respectively. In terms of the above analysis, we can obtain this a basic fact that it only needs to consider the k-Prabhakar fractional integral to cover these results from the four new fractional operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang X J. General Fractional Derivatives: Theory, Methods and Applications. New York: CRC Press, 2019

    Book  Google Scholar 

  2. Kumar S, Ranbir K, Carlo C, Bessem S. Chaotic behaviour of fractional predator-prey dynamical system. Chaos, Solitons & Fractals, 2020, 135: 109811

    Article  MathSciNet  Google Scholar 

  3. Kumar S, Kumar A, Samet B, Dutta H. A study on fractional host-parasitoid population dynamical model to describe insect species. Numer Meth Part Diff Equ, 2021, 37(2): 1673–1692

    Article  MathSciNet  Google Scholar 

  4. Zhao Y W, Xia J W, Lü X. The variable separation solution, fractal and chaos in an extended coupled (2+1)-dimensional Burgers system. Nonl Dyn, 2022, 108(4): 4195–4205

    Article  Google Scholar 

  5. Liu J G, Zhang Y F, Wang J J. Investigation of the time fractional generalized (2+1)-dimensional Zakharov-Kuznetsov equation with single-power law nonlinearity. Fractals, 2023, 31(5): 2350033

    Article  Google Scholar 

  6. Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Prog Fract Diff Appl, 2015, 1: 73–85

    Google Scholar 

  7. Atangana A, Baleanu D. New fractional derivative without nonlocal and nonsingular kernel: Theory and application to heat transfer model. Therm Sci, 2016, 20: 763–769

    Article  Google Scholar 

  8. Sun H, Hao X, Zang Y, Baleanu D. Relaxation and diffusion models with non-singular kernel. Phys A, 2017, 468: 590–596

    Article  MathSciNet  Google Scholar 

  9. Teodoro G S. Derivadas Fracionarias: Tipos e Criterios de Validade[D]. Campinas: Imecc-Unicamp, 2019

    Google Scholar 

  10. Yang X J. A new integral transform operator for solving the heat-diffusion problem. Appl Math Lett, 2017, 64: 193–197

    Article  MathSciNet  Google Scholar 

  11. Yang X J, Tenreiro Machado J A, Baleanu D. Anomalous diffusion models with general fractional derivatives within the kernels of the extended Mittag-Leffler type functions. Rom Rep Phys, 2017, 69: S1–S9

    Google Scholar 

  12. Khalil R, Horani M A, Yousef A, Sababheh M. A new definition of fractional derivative. J Comput Appl Math, 2014, 264: 65–70

    Article  MathSciNet  Google Scholar 

  13. Vanterler da C Sousa J, Capelas de Oliveira E. On the ψ-Hilfer fractional derivative. Commun Nonl Sci Numer Simul, 2018, 60: 72–91

    Article  MathSciNet  Google Scholar 

  14. Saigo M, Saxena R K, Kilbas A A. Generalized Mittag-Leffler function and generalized fractional calculus operators. Inte Tran Spec Fun, 2004, 15(1): 31–49

    Article  MathSciNet  Google Scholar 

  15. Zhao D, Luo M. Representations of acting processes and memory effects: general fractional derivatives and its application to theory of heat conduction with finite wave speeds. Appl Math Comput, 2019, 346: 531–544

    MathSciNet  Google Scholar 

  16. Kumar S, Chauhan R P, Momani S, Hadid S. Numerical investigations on COVID-19 model through singular and non-singular fractional operators. Numer Meth Part Diff Equ, 2024, 40(1): e22707

    Article  MathSciNet  Google Scholar 

  17. Muhammad Altaf K, Ullah S, Kumar S. A robust study on 2019-nCOV outbreaks through non-singular derivative. Eur Phys J Plus, 2021, 136: 1–20

    Google Scholar 

  18. Kumar S, Kumar R, Osman M S, Samet B. A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numer Meth Part Diff Equ, 2021, 37(2): 1250–1268

    Article  MathSciNet  Google Scholar 

  19. Liu J G, Yang X J, Feng Y Y, Geng L L. A new fractional derivative for solving time fractional diffusion wave equation. Math Meth Appl Sci, 2022, 46(1): 267–272

    Article  MathSciNet  Google Scholar 

  20. Yang X J, Gao F, Ju Y. General Fractional Derivatives with Applications in Viscoelasticity. New York: Academic Press, 2020

    Google Scholar 

  21. Hakimeh M, Kumar S, Rezapour S, Etemad S. A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos, Solitons & Fractals, 2021, 144: 110668

    Article  MathSciNet  Google Scholar 

  22. Liu J G, Yang X J, Feng Y Y, Geng L L. On the generalized weighted Caputo-type differential operator. Fractals, 2022, 31(1): 2250032

    Article  Google Scholar 

  23. Mittag-Leffler G M. Sur la nouvelle fonction eα(x). CR Acad Sci Paris, 1903, 137: 554–558

    Google Scholar 

  24. Wiman A. Uber den fundamental satz in der theorie der funcktionen, Eα(x). Acta Math, 1905, 29: 191–201

    Article  MathSciNet  Google Scholar 

  25. Prabhakar T R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yoko Math J, 1971, 19: 171–183

    MathSciNet  Google Scholar 

  26. Dorrego G A, Cerutti R A. The k-Mittag-Leer function. Int J Contemp Math Sci, 2012, 7(1): 705–716

    MathSciNet  Google Scholar 

  27. Díaz R, Eddy P. On hypergeometric functions and Pochhammer k-symbol. Divulg Mat, 2007, 15(2): 179–192

    MathSciNet  Google Scholar 

  28. Dorrego G A. Generalized Riemann-Liouville fractional operators associated with a generalization of the Prabhakar integral operator. Int J Prog Fract Diff Appl, 2016, 2(2): 131–140

    Article  Google Scholar 

  29. Mehmet Z S, Aysel K. On the k-Riemann-Liouville fractional integral and applications. Int J Stat Math, 2014, 1(3): 33–43

    Google Scholar 

  30. Liu J G, Yang X J, Wang J J. A new perspective to discuss Korteweg-de Vries-like equation. Phys Lett A, 2022, 451: 128429

    Article  MathSciNet  Google Scholar 

  31. Yin Y H, Luü X, Ma W X. Baücklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation. Nonl Dyn, 2022, 108(4): 4181–4194

    Article  Google Scholar 

  32. Wen L L, Fan E G, Chen Y. The Sasa-Satsuma equation on a non-zero background: the inverse scattering transform and multi-soliton solutions. Acta Math Sci, 2023, 43(3): 1045–1080

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangen Liu.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Additional information

Liu’s research was supported by NSFC (11971475), the Natural Science Foundation of Jiangsu Province (BK20230708) and the Natural Science Foundation for the Universities in Jiangsu Province (23KJB110003); Geng’s research was supported by the NSFC (11201041) and the China Postdoctoral Science Foundation (2019M651765).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Geng, F. An explanation on four new definitions of fractional operators. Acta Math Sci 44, 1271–1279 (2024). https://doi.org/10.1007/s10473-024-0405-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-024-0405-7

Key words

2020 MR Subject Classification

Navigation