Skip to main content
Log in

A Strong Solution of Navier-Stokes Equations with a Rotation Effect for Isentropic Compressible Fluids

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

We study the initial boundary value problem for the three-dimensional isentropic compressible Navier-Stokes equations in the exterior domain outside a rotating obstacle, with initial density having a compact support. By the coordinate system attached to the obstacle and an appropriate transformation of unknown functions, we obtain the three-dimensional isentropic compressible Navier-Stokes equations with a rotation effect in a fixed exterior domain. We first construct a sequence of unique local strong solutions for the related approximation problems restricted in a sequence of bounded domains, and derive some uniform bounds of higher order norms, which are independent of the size of the bounded domains. Then we prove the local existence of unique strong solution of the problem in the exterior domain, provided that the initial data satisfy a natural compatibility condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S, Douglis A, Nirenberg L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm Pure Appl Math, 1964, 17: 35–92

    Article  MathSciNet  Google Scholar 

  2. Bian D, Li J. Finite time blow up of compressible Navier-Stokes equations on half space or outside a fixed ball. J Differential Equations, 2019, 267(12): 7047–7063

    Article  MathSciNet  Google Scholar 

  3. Cho Y, Choe H J, Kim H. Unique solvability of the initial boundary value problems for compressible viscous fluids. J Math Pures Appl (9), 2004, 83(2): 243–275

    Article  MathSciNet  Google Scholar 

  4. Choe H J, Kim H. Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J Differential Equations, 2003, 190(2): 504–523

    Article  MathSciNet  Google Scholar 

  5. Ding S, Huang B, Lu Y. Blowup criterion for the compressible fluid-particle interaction model in 3D with vacuum. Acta Mathematica Scientia, 2016, 36B(4): 1030–1048

    Article  MathSciNet  Google Scholar 

  6. Farwig R, Pokorný M. A linearized model for compressible flow past a rotating obstacle: analysis via modified Bochner-Riesz multipliers. Z Anal Anwend, 2015, 34(3): 285–308

    Article  MathSciNet  Google Scholar 

  7. Galdi G P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol I. Springer Tracts in Natural Philosophy, Vol 38. New York: Springer-Verlag, 1994

    Google Scholar 

  8. Geissert M, Heck H, Hieber H. Lp-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle. J Reine Angew Math, 2006, 596: 45–62

    MathSciNet  MATH  Google Scholar 

  9. Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin Heidelberg: Springer-Verlag, 2001

    Book  Google Scholar 

  10. Hansel T, Rhandi A. The Oseen-Navier-Stokes flow in the exterior of a rotating obstacle: the nonautonomous case. J Reine Angew Math, 2014, 694: 1–26

    Article  MathSciNet  Google Scholar 

  11. Hishida T. An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle. Arch Ration Mech Anal, 1999, 150(4): 307–348

    Article  MathSciNet  Google Scholar 

  12. Hishida T. The Stokes operator with rotation effect in exterior domains. Analysis (Munich), 1999, 19(1): 51–67

    MathSciNet  MATH  Google Scholar 

  13. Hishida T. Large time behavior of a generalized Oseen evolution operator, with applications to the Navier-Stokes flow past a rotating obstacle. Math Ann, 2018, 372(3/4): 915–949

    Article  MathSciNet  Google Scholar 

  14. Hishida T, Shibata Y. Lp-Lq estimate of the Stokes operator and Navier-Stokes flows in the exterior of a rotating obstacle. Arch Ration Mech Anal, 2009, 193(2): 339–421

    Article  MathSciNet  Google Scholar 

  15. Huang X, Li J. Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations. Arch Rational Mech Anal, 2018, 227(3): 995–1059

    Article  MathSciNet  Google Scholar 

  16. Huang X, Li J, Xin Z. Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Comm Pure Appl Math, 2012, 65(4): 549–585

    Article  MathSciNet  Google Scholar 

  17. Kračmar S, Nečasová Š, Novotný A. The motion of a compressible viscous fluid around rotating body. Ann Univ Ferrara Sez VII Sci Mat, 2014, 60(1): 189–208

    Article  MathSciNet  Google Scholar 

  18. Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20(1):67–104

    MathSciNet  MATH  Google Scholar 

  19. Matsumura A, Nishida T. Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Comm Math Phys, 1983, 89(4): 445–464

    Article  MathSciNet  Google Scholar 

  20. Sun Y, Wang C, Zhang Z. A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations. J Math Pures Appl, 2011, 95(9): 36–47

    Article  MathSciNet  Google Scholar 

  21. Valli A. A correction to the paper: “An existence theorem for compressible viscous fluids” [Ann Mat Pura Appl (4) 130 (1982), 197–213; MR 83h:35112]. Ann Mat Pura Appl (4), 1982, 132: 399–400

    Article  MathSciNet  Google Scholar 

  22. Valli A. An existence theorem for compressible viscous fluids. Ann Mat Pura Appl (4), 1982, 130: 197–213

    Article  MathSciNet  Google Scholar 

  23. Valli A. Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method. Ann Scuola Norm Sup Pisa Cl Sci (4), 1983, 10(4): 607–647

    MathSciNet  MATH  Google Scholar 

  24. Xin Z. Blow-up of smooth solutions to the compressible Navier-Stokes equation with compact density. Comm Pure Appl Math, 1998, 51(3): 229–240

    Article  MathSciNet  Google Scholar 

  25. Ye Y. global classical solution to the Cauchy problem of the 3-D compressible Naiver-Stokes equations with density-dependent viscousity. Acta Mathematica Scientia, 2016, 36B(5): 1419–1432

    Article  Google Scholar 

  26. Zhu S. Blow-up of classical solutions to the compressible magnetohydrodynamic equations with vacuum. Acta Mathematica Scientia, 2016, 36B(1): 220–232

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuowei Chen  (陈拓炜).

Additional information

This work was partially supported by NSFC (11421061), and by National Science Foundation of Shanghai (15ZR1403900).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Zhang, Y. A Strong Solution of Navier-Stokes Equations with a Rotation Effect for Isentropic Compressible Fluids. Acta Math Sci 41, 1579–1605 (2021). https://doi.org/10.1007/s10473-021-0511-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-021-0511-8

Key words

2010 MR Subject Classification

Navigation