Skip to main content
Log in

Fully integrated CMOS tunable power amplifier using reconfigurable input/interstage/output matching networks

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a two-stage tunable power amplifier (PA) fully-integrated in 130 nm CMOS process. This multi-band PA consists of reconfigurable input, interstage, and output matching networks in order to tune the center frequency in use. The proposed tunable power amplifier enables three different bands with center frequency of 900 MHz, 1450 MHz, and 1900 MHz. By switching these bands, the designed power amplifier covers frequency range of 700 MHz–2200 MHz known as Long-Term Evolution mobile network. As a result, the proposed tunable power amplifier obtains small-signal gain (S21) of 27.8 dB/29.4 dB/28.6 dB, saturated output power (Psat) of 22.4 dBm/23.0 dBm/23.2 dBm, and power added efficiency of 21.0%/23.7%/25.0% at three targeted frequency bands, respectively. The proposed fully-integrated triple-band power amplifier chip layout occupies an area of 2.25 mm2 including bond pads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Imanishi, D., Okada, K., & Matsuzawa, A. (2009). A 0.9–3.0 GHz fully integrated tunable CMOS power amplifier for multi-band transmitters. IEEE Asian Solid-State Circuits Conference, pp 253–256.

  2. Magnusson, H., & Olsson, H. (2007). A compact dual-band power amplifier driver for 2.4 GHz and 5.2 GHz WLAN transmitters. IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp 83–86.

  3. Park, J., Lee, C., & Park, C. (2015). A quad-band CMOS linear power amplifier for EDGE applications using an anti-phase method to enhance its linearity. IEEE Transactions on Circuits and Systems I: Regular Papers, 99, 1–12.

    Google Scholar 

  4. Aniktar, H., et al. (2006). A 850/900/1800/1900 MHz quad-band CMOS medium power amplifier. European Microwave Conference (EuMC), Manchester, pp 403–406.

  5. Nitesh, R. S., et al. (2018). A 700 MHz to 2.5 GHz cascode GaAs power amplifier for multi-band pico-cell achieving 20 dB gain, 40 dBm to 45dBm OIP3 and 66% peak. IEEE Access, 6, 818–829.

    Article  Google Scholar 

  6. Lee, H., Lee, M., & Yu, J. (2016). Reconfigurable 4 × 4 multi-port amplifier with switchable input and output matrices. IET Microwaves, Antennas & Propagation, 10, 1312–1321.

    Article  Google Scholar 

  7. Fukuda, A., et al. (2010). A high power and highly efficient multi-band power amplifier for mobile terminals. IEEE Radio and Wireless (RFIC) Symposium, pp 45–48.

  8. Kalyan, R., Rawat, K., & Koul, S. (2015). Design strategy of concurrent multi-band Doherty power amplifier. IET Microwaves, Antennas & Propagation, 9, 1313–1322.

    Article  Google Scholar 

  9. Kong, X., et al. (2017). Continuous and reconfigurable Doherty power amplifier using tunable comb structure. Asia-Pacific Conference on Antennas and Propagation (APCAP), pp 1–3.

  10. Lee, G., Jung, J., & Song, J. (2015). A multiband power amplifier with a reconfigurable output matching network for 10 MHZ BW LTE mobile phone applications. IEEE Transactions on Circuits and Systems-II: Express Briefs, 62, 558–562.

    Article  Google Scholar 

  11. Kim, U., et al. (2012). A multiband reconfigurable power amplifier for UMTS handset applications. IEEE Transactions on Microwave Theory and Techniques, 60, 2532–2542.

    Article  Google Scholar 

  12. Okazaki, H., et al. (2010). Reconfigurable amplifier towards enhanced selectivity of future multi-band mobile terminals. IEEE International Microwave Workshop Series on RF Front-ends for Software Defined and Cognitive Radio Solutions (IMWS), pp 1–4.

  13. Fukuda, A., et al. (2005). A 900/1500/2000-MHz triple-band reconfigurable power amplifier employing RF-MEMS switches. IEEE MMT-S International Microwave Symposium Digest, pp 657–660.

  14. Ali, F., & Lourandakis, E. (2010). Tunable multiband power amplifier using thin-film BST varactors for 4G handheld applications. IEEE Radio and Wireless Symposium (RWS), pp. 236–239.

  15. Hamidi, S.B., & Dawn, D. (2017). Fully integrated LTE-band CMOS tunable power amplifier. IEEE Wireless and Microwave Technology Conference (WAMICON).

  16. Roy, P., Hamidi,S.B., Dawn, D. (2017). Fully integrated LTE-advanced band-switchable high gain CMOS power amplifier. IEEE International Conference on Electro Information Technology (EIT), pp. 431–435.

  17. Hamidi, S.B., & Dawn, D. (2019). A 900-1900-MHz band-switchable CMOS power amplifier. IEEE MTT-S International Microwave and RF Conference (IMaRC).

  18. Gorbachov, O. (2005). RF linear power amplifier gain stabilization over ambient temperature. Microwave Journal, pp. 1–8.

  19. Heo, J., et al. (2008). Effect of printed circuit board structures on temperature-dependent gain characteristics of RF power amplifier chips. IEEE Microwave and Wireless Components Letters, 18, 323–325.

    Article  Google Scholar 

  20. Kang, T., & Seo, D. (2015). The effect of temperature on performance of a RF cmos power amplifier and bond wires. IEEE Electrical Performance of Electronic Packaging and Systems (EPEPS), pp. 69–72.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Babak Hamidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidi, S., Dawn, D. Fully integrated CMOS tunable power amplifier using reconfigurable input/interstage/output matching networks. Analog Integr Circ Sig Process 107, 73–82 (2021). https://doi.org/10.1007/s10470-020-01777-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01777-9

Keywords

Navigation