Skip to main content
Log in

\(\alpha\)-order universal filter realization based on single input multi-output differential voltage current conveyor

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Two voltage-mode topologies single input multi-output universal fractional filters with high input impedance are proposed. The proposed analog filters consist of three DVCC+ blocks, two grounded capacitors and two resistors targeting the minimum passive elements. The proposed topologies provide a realization for all standard fractional filter functions (HP, LP, BP, AP and notch filter). The effect of Fractional order on filter responses in the range of \(\alpha\) from 0.7 to 1.2 was studied. Fractional order has been investigated for different filter responses in terms of cutoff, gain, phase and noise. The central frequency was designed to be 110 KHz for the first topology, while that of the second topology is around 100 KHz. The proposed filters are simulated using Cadence TSMC 130nm with dual supply voltages \(\pm \,0.75V\). A performance comparison between the proposed topologies and the topologies in the literature shows that the proposed architecture gives an acceptable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Elwy, O., Said, L. A., Madian, A. H., & Radwan, A. G. (2019). All possible topologies of the fractional-order wien oscillator family using different approximation techniques. Circuits, Systems, and Signal Processing, 38(9), 3931–3951.

    Article  Google Scholar 

  2. Khalil, N. A., Said, L. A., Radwan, A. G., & Soliman, A. M. (2019). Generalized two-port network based fractional order filters. AEU-International Journal of Electronics and Communications, 104, 128–146.

    Article  Google Scholar 

  3. Hamed, E. M., Said, L. A., Madian, A. H., & Radwan, A. G. (2020). On the approximations of cfoa-based fractional-order inverse filters. Circuits, Systems, and Signal Processing, 39(1), 2–29.

    Article  Google Scholar 

  4. Ismail, S. M., Said, L. A., Rezk, A. A., Radwan, A. G., Madian, A. H., Abu-Elyazeed, M. F., et al. (2017). Generalized fractional logistic map encryption system based on fpga. AEU-International Journal of Electronics and Communications, 80, 114–126.

    Article  Google Scholar 

  5. Freeborn, T. J. (2013). A survey of fractional-order circuit models for biology and biomedicine. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(3), 416–424.

    Article  Google Scholar 

  6. Mohsen, M., Said, L. A., Elwakil, A. S., Madian, A. H., Radwan, A. G., Extracting optimized bio-impedance model parameters using different topologies of oscillators. IEEE Sensors Journal, 20(17), 9947–9954.

  7. Li, Z., Liu, L., Dehghan, S., Chen, Y., & Xue, D. (2017). A review and evaluation of numerical tools for fractional calculus and fractional order controls. International Journal of Control, 90(6), 1165–1181.

    Article  MathSciNet  Google Scholar 

  8. Dumlu, A., & Erenturk, K. (2013). Trajectory tracking control for a 3-dof parallel manipulator using fractional-order control. IEEE Transactions on Industrial Electronics, 61(7), 3417–3426.

    Article  Google Scholar 

  9. Tolba, M. F., Elsafty, A. H., Armanyos, M., Said, L. A., Madian, A. H., & Radwan, A. G. (2019). Synchronization and fpga realization of fractional-order izhikevich neuron model. Microelectronics Journal, 89, 56–69.

    Article  Google Scholar 

  10. Elwy, O., AbdelAty, A. M., Said, L. A., Madian, A. H., & Radwan, A. G. (2020). Two implementations of fractional-order relaxation oscillators. Analog Integrated Circuits and Signal Processing, 1–12.

  11. Shu, X., & Zhang, B. (2018). The effect of fractional orders on the transmission power and efficiency of fractional-order wireless power transmission system. Energies, 11(7), 1774.

    Article  Google Scholar 

  12. Elwakil, A. S., Allagui, A., Freeborn, T., & Maundy, B. (2017). Further experimental evidence of the fractional-order energy equation in supercapacitors. AEU-International Journal of Electronics and Communications, 78, 209–212.

    Article  Google Scholar 

  13. Koton, J., Sladok, O., Salasek, J., & Ushakov, P. A. (2016). Current-mode fractional low-and high-pass filters using current conveyors. In 8th international congress on ultra modern telecommunications and control systems and workshops (ICUMT). IEEE (pp. 231–234).

  14. Duffett-Smith, P. (1990). Book review: Synthesis of lumped element, distributed, and planar filters. helszajn j., 1990, mcgraw-hill, uk,£ 40 (hb), JATP 52 (9) 811–812.

  15. Valsa, J., Dvorak, P., & Friedl, M. (2011). Network model of the cpe. Radioengineering, 20(3), 619–626.

    Google Scholar 

  16. Horng, J.-W. High input impedance first-order allpass, highpass and lowpass filters with grounded capacitor using single dvcc.

  17. Chiu, W.-Y., Horng, J.-W., Lee, H., & Huang, C.-C. (2010). Dvcc-based voltage-mode biquadratic filter with high-input impedance. In Fifth IEEE international symposium on electronic design. Test & Applications, IEEE (pp. 121–125).

  18. Ansari, A., Kaur, G., & Hashmi, M. Current differencing buffered amplifier (cdba) based current mode universal fractional order filter, Proc. Nat. Con. on Adv. in Microelectronics, Instrumentation and Communication (MICOM 2015), At BITS Pilani, India.

  19. Langhammer, L., Sotner, R., Dvorak, J., Jerabek, J., & Ushakov, P. A. (2019). Novel electronically reconfigurable filter and its fractional-order counterpart. In 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), IEEE (pp. 538–541).

  20. Langhammer, L., Dvorak, J., Sotner, R., Jerabek, J., & Bertsias, P. Reconnection–less reconfigurable low–pass filtering topology suitable for higher–order fractional–order design. Journal of Advanced Research, 25, 257–274.

  21. Dar, M. R., Kant, N. A., & Khanday, F. A. (2018). Realization of fractional-order double-scroll chaotic system using operational transconductance amplifier (ota). Journal of Circuits Systems and Computers, 27(01), 1850006.

    Article  Google Scholar 

  22. Koton, J., Jerabek, J., Herencsar, N., & Kubanek, D. (2017). Current conveyors in current-mode circuits approximating fractional-order low-pass filter. In: 2017 European Conference on Circuit Theory and Design (ECCTD), IEEE (pp. 1–4).

  23. Langhammer, L., Sotner, R., Dvorak, J., Jerabek, J., & Polak, J. (2017). Fully-differential tunable fractional-order filter with current followers and current amplifiers. In 27th International Conference Radioelektronika (RADIOELEKTRONIKA). IEEE, (pp. 1–6).

  24. Kubanek, D., Koton, J., Jerabek, J., Ushakov, P., & Shadrin, A. (2016). Design and properties of fractional-order multifunction filter with dvccs. In 2016 39th International Conference on Telecommunications and Signal Processing (TSP), IEEE (pp. 620–624).

  25. Mishra, S. K., Gupta, M., & Upadhyay, D. K. (2020). Active realization of fractional order butterworth lowpass filter using dvcc. Journal of King Saud University-Engineering Sciences, 32(2), 158–165.

    Article  Google Scholar 

  26. Said, L. A., Radwan, A. G., Madian, A. H., & Soliman, A. M. (2016). Fractional-order inverting and non-inverting filters based on cfoa. In 39th international conference on telecommunications and signal processing (TSP). IEEE (pp. 599–602).

  27. Khateb, F., Kubánek, D., Tsirimokou, G., & Psychalinos, C. (2016). Fractional-order filters based on low-voltage ddccs. Microelectronics Journal, 50, 50–59.

    Article  Google Scholar 

  28. Koton, J., Kubanek, D., Vrba, K., Shadrin, A., & Ushakov, P. (2016). Universal voltage conveyors in fractional-order filter design. In 2016 39th International Conference on Telecommunications and Signal Processing (TSP), IEEE (pp. 593–598).

  29. Mahata, S., Kar, R., & Mandal, D. (2020). Optimal rational approximation of bandpass butterworth filter with symmetric fractional-order roll-off. AEU-International Journal of Electronics and Communications, 117, 153106.

    Article  Google Scholar 

  30. Elwan, H., & Soliman, A. (1997). Novel cmos differential voltage current conveyor and its applications. IEE Proceedings-Circuits, Devices and Systems, 144(3), 195–200.

    Article  Google Scholar 

  31. Alpaslan, H., & Yuce, E. (2020). Dvcc+ based multifunction and universal filters with the high input impedance features. Analog Integrated Circuits and Signal Processing, 103(2), 325–335.

    Article  Google Scholar 

  32. Minaei, S., & Ibrahim, M. A. (2009). A mixed-mode khn-biquad using dvcc and grounded passive elements suitable for direct cascading. International Journal of Circuit Theory and Applications, 37(7), 793–810.

    Article  Google Scholar 

  33. Horng, J.-W., Hsu, C.-H., & Tseng, C.-Y. (2012). High input impedance voltage-mode universal biquadratic filters with three inputs using three ccs and grounding capacitors. Radioengineering, 21(1), 290–296.

    Google Scholar 

  34. Minaei, S., & Yuce, E. (2010). All-grounded passive elements voltage-mode dvcc-based universal filters. Circuits, Systems and Signal Processing, 29(2), 295–309.

    Article  Google Scholar 

  35. Matsuda, K., & Fujii, H. (1993). H (infinity) optimized wave-absorbing control-analytical and experimental results. Journal of Guidance, Control, and Dynamics, 16(6), 1146–1153.

    Article  Google Scholar 

  36. Tepljakov, A., Petlenkov, E., & Belikov, J. (2014). Closed-loop identification of fractional-order models using fomcon toolbox for matlab. In 14th Biennial Baltic Electronic Conference (BEC). IEEE (pp. 213–216).

  37. Yuce, E. (2010). A novel floating simulation topology composed of only grounded passive components. International Journal of Electronics, 97(3), 249–262.

    Article  Google Scholar 

  38. Tangsrirat, W., & Channumsin, O. Voltage-mode multifunctional biquadratic filter using single dvcc and minimum number of passive elements.

  39. Kubanek, D., & Freeborn, T. (2018). (1+ \(\alpha\)) fractional-order transfer functions to approximate low-pass magnitude responses with arbitrary quality factor. AEU-International Journal of Electronics and Communications, 83, 570–578.

    Article  Google Scholar 

  40. Horng, J.-W. (2012). Voltage-mode multifunction biquadratic filter employing single dvcc. International Journal of Electronics, 99(2), 153–162.

    Article  Google Scholar 

  41. Abaci, A., & Yuce, E. (2016). Second-order voltage-mode universal filters using two dvccs, two grounded capacitors and four resistors. Journal of Circuits Systems and Computers, 25(12), 1650154.

    Article  Google Scholar 

  42. Tsirimokou, G., Koumousi, S., & Psychalinos, C. (2016). Design of fractional-order filters using current feedback operational amplifiers. Journal of Engineering Science and Technology Review, 9(4), 71–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Madian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoneim, M., Hesham, R., Yassin, H. et al. \(\alpha\)-order universal filter realization based on single input multi-output differential voltage current conveyor. Analog Integr Circ Sig Process 107, 411–422 (2021). https://doi.org/10.1007/s10470-020-01753-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01753-3

Keywords

Navigation