Skip to main content
Log in

All Possible Topologies of the Fractional-Order Wien Oscillator Family Using Different Approximation Techniques

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper introduces all the possible topologies of the Wien bridge oscillator family. This family has 72 topologies, 24 of them contain only RC or RL pairs, and the rest contain mixed pairs. The complete mathematical analysis of all twelve possible capacitive-based topologies is proposed in the fractional-order domain. The investigated circuits can be categorized into two groups, each with a similar characteristic equation. Three integer-order approximation techniques for the Laplacian operator \(s^\alpha \) are employed to solve and simulate the Wien bridge system. The studied approximations are those of Matsuda, Oustaloup, and Valsa’s network. Fractional-order capacitor (FOC) emulators are built using these approximations and applied in the circuit simulation. Comparisons are made on different levels, starting with the mathematical solution of the characteristic equation, followed by PSpice simulation, which compares topologies of the Wien bridge oscillator family. Hardware implementation of the FOC emulators is presented applying passive discrete components using the Foster-I technique. Additionally, sensitivity tests of the discrete components of the FOC emulators are performed using Monte Carlo analysis. Experimental results are introduced to validate the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. AboBakr, L.A. Said, A.H. Madian, A.S. Elwakil, A.G. Radwan, Experimental comparison of integer/fractional-order electrical models of plant. AEU-Int. J. Electron. Commun. 80, 1–9 (2017)

    Article  Google Scholar 

  2. W. Ahmad, R. El-Khazali, A. Elwakil, Fractional-order Wien-bridge oscillator. Electron. Lett. 37(18), 1110–1112 (2001)

    Article  Google Scholar 

  3. R. Caponetto, G. Maione, J. Sabatier, Fractional-order control: a new approach for industrial applications. Control Eng. Practice 56, 157–158 (2016)

    Article  Google Scholar 

  4. G. Carlson, C. Halijak, Approximation of fractional capacitors (1/s)(1/n) by a regular newton process. IEEE Trans. Circuit Theory 11(2), 210–213 (1964)

    Article  Google Scholar 

  5. A. Charef, H. Sun, Y. Tsao, B. Onaral, Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Duffett-Smith, Synthesis of lumped element, distributed, and planar filters. J. Atmos. Terrestrial Phys. 52(9), 811–812 (1990)

    Article  Google Scholar 

  7. A.S. Elwakil, Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 10(4), 40–50 (2010)

    Article  Google Scholar 

  8. A.S. Elwakil, A. Allagui, T. Freeborn, B. Maundy, Further experimental evidence of the fractional-order energy equation in supercapacitors. AEU-Int. J. Electron. Commun. 78, 209–212 (2017)

    Article  Google Scholar 

  9. O. Elwy, E. M. Hamed, S. H. Rashad, A. M. AbdelAty, L. A. Said, A. G. Radwan, On the approximation of fractional-order circuit design, in: Fractional Order Systems, Elsevier, 2018, pp. 239–270

  10. O. Elwy, S.H. Rashad, L.A. Said, A.G. Radwan, Comparison between three approximation methods on oscillator circuits. Microelectron. J. 81, 162–178 (2018)

    Article  Google Scholar 

  11. W. R. Hewlett, A new type resistance-capacity oscillator, Stanford University, 1939

  12. S. M. Ismail, L. A. Said, A. A. Rezk, A. G. Radwan, A. H. Madian, M. F. Abu-ElYazeed, A. M. Soliman, Biomedical image encryption based on double-humped and fractional logistic maps, in: 2017 6th International Conference on, IEEE Modern Circuits and Systems Technologies (MOCAST), 2017, pp. 1–4

  13. D. Kubanek, T. Freeborn, (1+ \(\alpha \)) fractional-order transfer functions to approximate low-pass magnitude responses with arbitrary quality factor. AEU-Int. J. Electron. Commun. 83, 570–578 (2018)

    Article  Google Scholar 

  14. D. Kubánek, F. Khateb, G. Tsirimokou, C. Psychalinos, Practical design and evaluation of fractional-order oscillator using differential voltage current conveyors. Circuits Syst. Signal Process. 35(6), 2003–2016 (2016)

    Article  MathSciNet  Google Scholar 

  15. G. Maione, Thiele’s continued fractions in digital implementation of noninteger differintegrators. Signal, Image Video Process. 6(3), 401–410 (2012)

    Article  Google Scholar 

  16. K. Matsuda, H. Fujii, H optimized wave-absorbing control: analytical and experimental results. J. Guidance Control Dyn. 16, 1146–1146 (1993)

  17. K. Oprzȩdkiewicz, W. Mitkowski, E. Gawin, An estimation of accuracy of oustaloup approximation, in: International Conference on Automation, Springer, 2016, pp. 299–307

  18. A. Oustaloup, P. Melchior, P. Lanusse, O. Cois, F. Dancla, The crone toolbox for matlab, in: IEEE International Symposium on, IEEE Computer-Aided Control System Design, 2000. CACSD 2000. pp. 190–195

  19. A. Oustaloup, F. Levron, B. Mathieu, F.M. Nanot, Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I Fundamental Theory Appl. 47(1), 25–39 (2000)

    Article  Google Scholar 

  20. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some Of Their Applications, Vol. 198, Academic press, 1998

  21. A.G. Radwan, A.S. Elwakil, A.M. Soliman, Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Trans. Circuits Syst. I: Regular Papers 55(7), 2051–2063 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Radwan, A. Soliman, A. Elwakil, Design equations for fractional-order sinusoidal oscillators: four practical circuit examples. Int. J. Circuit Theory Appl. 36(4), 473–492 (2008)

    Article  MATH  Google Scholar 

  23. H. Richard, Fractional Calculus: An Introduction for Physicists (World Scientific, Singapore, 2014)

    MATH  Google Scholar 

  24. L. A. Said, A. G. Radwan, A. H. Madian, A. M. Soliman, Survey on two-port network-based fractional-order oscillators, in: Fractional Order Systems, Elsevier, 2018, pp. 305–327

  25. L. A. Said, A. G. Radwan, A. H. Madian, A. M. Soliman, Three fractional-order-capacitors-based oscillators with controllable phase and frequency, J. Circuits, Syst. Comput. 26 (10) (2017) 1750160

  26. L.A. Said, A.G. Radwan, A.H. Madian, A.M. Soliman, Two-port two impedances fractional order oscillators. Microelectron. J. 55, 40–52 (2016)

    Article  Google Scholar 

  27. L.A. Said, A.G. Radwan, A.H. Madian, A.M. Soliman, Fractional order oscillator design based on two-port network. Circuits Syst. Signal Process. 35(9), 3086–3112 (2016)

    Article  MathSciNet  Google Scholar 

  28. L.A. Said, S.M. Ismail, A.G. Radwan, A.H. Madian, M.F.A. El-Yazeed, A.M. Soliman, On the optimization of fractional order low-pass filters. Circuits, Syst. Signal Process. 35(6), 2017–2039 (2016)

    Article  MathSciNet  Google Scholar 

  29. A.S. Sedra, K.C. Smith, Microelectronic Circuits (Oxford University Press, Oxford, 2015)

    Google Scholar 

  30. A. Tepljakov, E. Petlenkov, J. Belikov, Closed-loop identification of fractional-order models using fomcon toolbox for matlab, in: Electronic Conference (BEC), 2014 14th Biennial Baltic, IEEE, 2014, pp. 213–216

  31. M. F. Tolba, A. M. AbdelAty, L. A. Said, A. H. Madian, A. G. Radwan, FPGA implementation of fractional-order chaotic systems, in: Fractional Order Systems, Elsevier, 2018, pp. 33–62

  32. S. Tumanski, Principles of Electrical Measurement (CRC Press, Boca Raton, 2006)

    Book  Google Scholar 

  33. D. Valério, J. S. da Costa, Ninteger: A non-integer control toolbox for matlab, Proceedings of the Fractional Differentiation and its Applications, Bordeaux

  34. J. Valsa, P. Dvorak, M. Friedl, Network model of the cpe. Radioengineering 20(3), 619–626 (2011)

    Google Scholar 

  35. B. Vinagre, I. Podlubny, A. Hernandez, V. Feliu, Some approximations of fractional order operators used in control theory and applications. Fract. Calculus Appl. Anal. 3(3), 231–248 (2000)

    MathSciNet  MATH  Google Scholar 

  36. R. Witte, J. Witte, Statistics, 10th Edition:, Wiley Global Education, 2013

  37. Z. Yakoub, M. Amairi, M. Chetoui, B. Saidi, M. Aoun, Model-free adaptive fractional order control of stable linear time-varying systems. ISA Trans. 67, 193–207 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Science and Technology Development Fund (STDF) for funding the project \(\#\) 25977 and the Nile University for facilitating all procedures required to complete this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lobna A. Said.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elwy, O., Said, L.A., Madian, A.H. et al. All Possible Topologies of the Fractional-Order Wien Oscillator Family Using Different Approximation Techniques. Circuits Syst Signal Process 38, 3931–3951 (2019). https://doi.org/10.1007/s00034-019-01057-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01057-6

Keywords

Navigation