Skip to main content
Log in

A 40 μW–30 mW generated power, 280 Ω–1.68 kΩ load resistance CMOS controllable constant-power source for thermally-based sensor applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A controllable constant-power source in 0.35 μm CMOS technology is presented in this paper. It is based on the resistive mirror method, and suitable for thermally-based sensor applications. Two versions have been developed and fabricated: a high-voltage design with a single supply of 10 V, and a low-voltage design with a single supply of 3.6 V. The measured results for the high voltage (low voltage) design are the following: a generated power dynamic range of 57.5 dB (52.4 dB), a load resistance dynamic range of 15.6 dB (12 dB), a voltage efficiency of 0.7 (0.61), and a relative error of the generated power less than 1.8% (1.8%). The temperature compensation of the controllable constant-power source has been performed for the temperature range 0 °C ≤ T ≤ 50 °C. The stability test has been carried out using a resistive load in pulse mode operation confirming that the stability of the proposed controllable constant-power source is not dependent on either the load resistance or the generated power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2: a
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Nguyen, N. T. (1999). Thermal mass flow sensors. In J. G. Webster (Ed.), The measurement, instrumentation, and sensors handbook (ch. 28.9). Boca Raton, FL: CRC Press.

    Google Scholar 

  2. Olin, J. G. (1999). Thermal anemometry. In J. G. Webster (Ed.), The measurement, instrumentation, and sensors handbook (ch. 29.2). Boca Raton, FL: CRC Press.

    Google Scholar 

  3. Skinner, A. J., & Lambert, M. F. (2009). A log-antilog analog control circuit for constant-power warm-thermistor sensors—application to plant water status measurement. IEEE Sensors Journal, 9, 1049–1057.

    Article  Google Scholar 

  4. Skinner, A. J., & Lambert, M. F. (2009). Evaluation of a warm-thermistor flow sensor for use in automatic seepage meters. IEEE Sensors Journal, 9, 1058–1067.

    Article  Google Scholar 

  5. Skinner, A. J., Wallace, A. K., & Lambert, M. F. (2011). A null-buoyancy thermal flow meter with potential application to the measurement of the hydraulic conductivity of soils. IEEE Sensors Journal, 11, 71–77.

    Article  Google Scholar 

  6. Chan, S. S. W., & Chan, P. C. H. (1999). A resistance-variation-tolerant constant-power heating circuit for integrated sensor applications. IEEE Journal of Solid-State Circuits, 34, 432–439.

    Article  Google Scholar 

  7. Ferri, G., & Stornelli, V. (2006). A high precision temperature control system for CMOS integrated wide range resistive gas sensors. Analog Integrated Circuits and Signal Processing, 47, 293–301.

    Article  Google Scholar 

  8. Sackett, D. (2009). Constant-power source. Maxim Integrated, Application Note 4470.

  9. Clocker, K., Sengupta, S., McKay, L., & Johnston, M. L. (2017). Single-element thermal flow sensor using dual-slope control scheme. In IEEE Sensors Conference, Glasgow, UK, 29 October 1 November, 2017.

  10. Leme, C. A., Filanovsky, I., & Baltes, H. (1992). CMOS stabilized DC power source. Electronics Letters, 28, 1153–1155.

    Article  Google Scholar 

  11. Huang, Q., Menolfi, C., & Baltes, H. (1995). Temperature and supply voltage stabilized power driver for flow sensors. In Proceedings of the 8th International Conference on Solid-State Sensors and Actuators, Stockholm, Sweden, June 2529, 1995 (pp. 440– 442).

  12. Tsai, M. J. & Tsou, M. C. (2013). Controller for controlling a power converter to output constant power and related method thereof. U.S. patent 2014/0098570 A1.

  13. Erceg, M. Z. (2018). A controllable constant power generator in 0.35 μm CMOS technology for thermal-based sensor applications. Journal of Sensors, Article ID 3747325.

  14. Tadić, N., Zogović, M., & Gobović, D. (2014). A CMOS controllable constant-power source for variable resistive loads using resistive mirror with large load resistance dynamic range. IEEE Sensors Journal, 14, 1988–1996.

    Article  Google Scholar 

  15. Tadić, N., Erceg, M., Dervić, A., & Gobović, D. (2018). An analog controllable CMOS constant-power source for a thermally-based sensor interface using a resistive mirror architecture. IEEE Sensors Journal, 18, 10066–10076.

    Article  Google Scholar 

  16. Tadić, N. (1998). Resistive mirror-based voltage controlled resistor with generalized active devices. IEEE Transactions on Instrumentation and Measurement, 47, 587–591.

    Article  Google Scholar 

  17. Tadić, N., Dervić, A., Erceg, M., Goll, B., & Zimmermann, H. (2019). A 54.2 dB current gain dynamic range, 1.78 GHz gain-bandwidth product CMOS VCCA2. IEEE Transactions on Circuits and Systems, Part II: Express Briefs, 66, 46–50.

    Article  Google Scholar 

  18. Tsividis, Y. (1999). Operating and modeling of the MOS transistor (2nd ed.). New York, NY: McGraw-Hill.

    Google Scholar 

  19. Allen, P. E., & Holberg, D. R. (2002). CMOS analog circuit design (2nd ed.). New York, NY: Oxford University Press.

    Google Scholar 

  20. Gray, P. R., Hurst, P. J., Lewis, S. H., & Meyer, R. G. (2001). Analysis and design of analog integrated circuits (4th ed.). New York, NY: Wiley.

    Google Scholar 

  21. Razavi, B. (2001). Design of analog CMOS integrated circuits. New York, NY: McGraw-Hill.

    Google Scholar 

  22. Gray, P. R., & Meyer, R. G. (1982). MOS operational amplifier design—a tutorial overview”. IEEE Journal of Solid-State Circuits, 17, 969–982.

    Article  Google Scholar 

  23. Nicollini, G., & Sanderowicz, D. (1987). Internal fully-differential operational amplifier for CMOS integrated circuits. U.S. Patent N. 918101.

  24. Nicollini, G., Moretti, F., & Conti, M. (1989). High-frequency fully differential filter using operational amplifiers without common-mode feedback. IEEE Journal of Solid-State Circuits, 24, 803–813.

    Article  Google Scholar 

  25. Nicollini, G., Confalonieri, P., & Sanderowicz, D. (1989). A fully differential sample-and-hold circuit for high-speed applications. IEEE Journal of Solid-State Circuits, 24, 1461–1465.

    Article  Google Scholar 

  26. Gulati, K., & Lee, H.-S. (1998). A high-swing CMOS telescopic operational amplifier. IEEE Journal of Solid-State Circuits, 33, 2010–2019.

    Article  Google Scholar 

  27. Nagulapalli, R., Hayatleh, K., Barker, S., Zourob, S., & Yassine, N. (2018). An OTA gain enhancement technique for low power biomedical applications. Analog Integrated Circuits and Signal Processing, 95, 387–394.

    Article  Google Scholar 

  28. Sedra, A. S., & Roberts, G. (1990). Current conveyor theory and practice. In C. Toumazou, F. J. Lidgey, & D. G. Haigh (Eds.), Analogue IC design: the current-mode approach (ch. 3) (pp. 93–126). Peter Peregrinus: Stevenage.

    Google Scholar 

  29. De Wit, M. (1995). Temperature independent resistor. U.S. Patent 5448103 A.

  30. Gregoire, B. R., & Moon, U.-K. (2007). Process-independent resistor temperature-coefficients using series/parallel and parallel/series composite resistors. In Proceedings of International Symposium on Circuits and Systems (pp. 2826–2829).

  31. Chiang, Y.-H., & Liu, S.-I. (2013). A submicrowatt 1.1-MHz CMOS relaxation oscillator with temperature compensation. IEEE Transactions on Circuits and Systems, Part II: Express Briefs, 60, 837–841.

    Article  Google Scholar 

  32. Sze, S. M. (2002). Semiconductor devices—physics and technology (2nd ed.). New York, NY: Wiley.

    Google Scholar 

  33. Backer, R. J., Li, H. W., & Boyce, D. E. (1998). CMOS—circuit design, layout and simulation. New York, NY: Wiley.

    Google Scholar 

  34. Sooch, N. S. (1985). MOS cascode current mirror. U. S. patent 4 550 284.

  35. Tadić, N., Banjević, M., Schloegl, F., & Zimmermann, H. (2010). Rail-to-rail BiCMOS operational amplifier using input signal adapters with floating outputs. Analog Integrated Circuits and Signal Processing, 63, 433–449.

    Article  Google Scholar 

Download references

Acknowledgement

Assistant Professor Milena Erceg would like to thank the Ministry of Science of Montenegro for financing her participation in this project through the BIO-ICT Centre of Excellence (Grant No.01-1001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikša Tadić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix derivation of the temperature coefficients of the offset voltages

Appendix derivation of the temperature coefficients of the offset voltages

The offset voltage VOFFOA2 of OA2 and its temperature coefficient ∂VOFFOA2/∂T will be derived in this appendix. The derivations of the offset voltage VOFFOA1 of OA1 and its temperature coefficient ∂VOFFOA1/∂T are similar to those of OA2. The derivations of the offset voltage VOFFCCI of the voltage follower part of the CCI and its temperature coefficient ∂VOFFCCI/∂T are similar to those of the differential pair M15–M16 within OA2.

The offset voltage VOFFOA2 of OA2 is presented by the difference of the input voltages VG24 and VG25 of OA2, Fig. 1, required to drive the output voltage of OA2 to the value VOUT2 = VDD − VSG19

$$ V_{OFFOA2} = V_{G24} - V_{G25} = V_{SG25} - V_{GS16} + V_{GS15} - V_{SG24} = V_{OFFSF2} + V_{OFFDA2} $$
(33)

where VGS15 and VGS16 are the gate-to-source voltages of M15 and M16, respectively, VSG24 and VSG25 are the source-to-gate voltages of M24 and M25, respectively. So, the offset voltage VOFFOA2 of OA2 consists of two parts: the offset voltage VOFFSF2 caused by the imperfections of the source followers made by M24 and M25 given by

$$ V_{OFFSF2} = V_{SG25} - V_{SG24} $$
(34)

and the offset voltage VOFFDA2 caused by the imperfections of the differential pair M15–M16 expressed as

$$ V_{OFFDA2} = V_{GS15} - V_{GS16} $$
(35)

Consequently, the temperature coefficient ∂VOFFOA2/∂T of the offset voltage of OA2 can be calculated as follows

$$ \frac{{\partial V_{OFFOA2} }}{\partial T} = \frac{{\partial V_{OFFSF2} }}{\partial T} + \frac{{\partial V_{OFFDA2} }}{\partial T} $$
(36)

Assuming a simple quadratic model of saturated MOSFET [18,19,20] and neglecting the channel length modulation, the drain currents ID24 and ID25 of M24 and M25, respectively, are given by

$$ I_{D24} = \frac{1}{2}\beta_{24} \left( {V_{SG24} + V_{t24} } \right)^{2} = \frac{{V_{B6} - V_{SG24} - V_{G24} }}{{R_{5} }} $$
(37)
$$ I_{D25} = \frac{1}{2}\beta_{25} \left( {V_{SG25} + V_{t25} } \right)^{2} = \frac{{V_{B7} - V_{SG25} - V_{G25} }}{{R_{6} }} $$
(38)

The following expressions for the source-to-gate voltages VSG24 and VSG25 of M24 and M25, respectively, are obtained by solving the quadratic Eqs. (37) and (38)

$$ V_{SG24} \approx - V_{t24} + \sqrt {2\frac{{V_{B6} + V_{t24} }}{{\beta_{24} R_{5} }}} $$
(39)
$$ V_{SG25} \approx - V_{t25} + \sqrt {2\frac{{V_{B7} + V_{t25} }}{{\beta_{25} R_{6} }}} $$
(40)

The relation (39) have been derived assuming β24R5|Vt24| ≫ 1, VB6 + Vt24 ≫ VG24, and 2β24R5(VB6 + Vt24) ≫ 1 (β24 ≈ 0.5 mA/V2, R5 = 20 kΩ, Vt24 = − 1.35 V, VB6 = 3.2 V, VG24 < 100 mV for the HV CCPS, and β24 ≈ 30 mA/V2, R5 = 20 kΩ, Vt24 = − 0.74 V, VB6 = 1.4 V, VG24 < 50 mV for the LV CCPS). The relation (40) have been derived assuming β25R6|Vt25| ≫ 1, VB7 + Vt25 ≫ VG25, and 2β25R6(VB7 + Vt25) ≫ 1 (β25 ≈ 0.5 mA/V2, R6 = 20 kΩ, Vt25 = − 1.35 V, VB7 = 3.15 V, VG24 < 100 mV for the HV CCPS, and β25 ≈ 30 mA/V2, R6 = 20 kΩ, Vt25 = − 0.74 V, VB7 = 1.39 V, VG25 < 50 mV for the LV CCPS). Using (34), (39), and (40) the following expression can be derived for the offset voltage VOFFSF2 caused by the imperfections of the source followers made by M24 and M25

$$ V_{OFFSF2} = V_{SG25} - V_{SG24} = V_{t24} - V_{t25} + \sqrt 2 \frac{{\sqrt {\left( {V_{B7} + V_{t25} } \right)\beta_{24} R_{5} } - \sqrt {\left( {V_{B6} + V_{t24} } \right)\beta_{25} R_{6} } }}{{\sqrt {\beta_{24} \beta_{25} R_{5} R_{6} } }} $$
(41)

Using the following substitutions: ΔVt2425 = Vt24 − Vt25, Vt2425 = (Vt24 + Vt25)/2, Δβ2425 = β24 − β25, β2425 = (β24 + β25)/2, ΔR56 = R5 − R6, R56 = (R5 + R6)/2, ΔVB67 = VB6 − VB7, VB67 = (VB6 + VB7)/2, the relation (41) is transformed into the following form

$$ V_{OFFSF2} \approx \Delta V_{t2425} + \sqrt {\frac{{V_{B67} + V_{t2425} }}{{2\beta_{2425} R_{56} }}} \left( {\frac{{\Delta \beta_{2425} }}{{\beta_{2425} }} + \frac{{\Delta R_{56} }}{{R_{56} }} - \frac{{\Delta V_{B67} + \Delta V_{t2425} }}{{V_{B67} + V_{t2425} }}} \right) $$
(42)

The relation (42) have been derived using the following approximation: (1 + x)1/2 ≈ 1 + x/2, for x ≪ 1. The temperature coefficient the offset voltage VOFFSF2 (42) caused by the imperfections of the source followers made by M24 and M25 can be calculates as follows:

$$ \frac{{\partial V_{OFFSF2} }}{\partial T} \approx \frac{1}{2}\sqrt {\frac{{V_{B67} + V_{t2425} }}{{2\beta_{2425} R_{56} }}} \left( {\frac{{\Delta \beta_{2425} }}{{\beta_{2425} }} + \frac{{\Delta R_{56} }}{{R_{56} }} - \frac{{\Delta V_{B67} + \Delta V_{t2425} }}{{V_{B67} + V_{t2425} }}} \right) \cdot \left[ {\frac{1}{{V_{B67} + V_{t2425} }}\frac{{\partial \left( {V_{B67} + V_{t2425} } \right)}}{\partial T} - \frac{1}{{\beta_{2425} }}\frac{{\partial \beta_{2425} }}{\partial T} - \frac{1}{{R_{56} }}\frac{{\partial R_{56} }}{\partial T}} \right] $$
(43)

Using (42), the relation (43) becomes

$$ \frac{{\partial V_{OFFSF2} }}{\partial T} \approx \frac{1}{2}\left( {V_{OFFSF2} - \Delta V_{t2425} } \right)\left[ {\frac{1}{{V_{B67} + V_{t2425} }}\frac{{\partial \left( {V_{B67} + V_{t2425} } \right)}}{\partial T} - \frac{1}{{\beta_{2425} }}\frac{{\partial \beta_{2425} }}{\partial T} - \frac{1}{{R_{56} }}\frac{{\partial R_{56} }}{\partial T}} \right] $$
(44)

The derivation of the offset voltage VOFFDA2 caused by the imperfections of the differential pair M15–M16 is similar to that in [20]. However, because the channel length modulation of M15, M16, M19, and M20 can be neglected thanks to the telescopic design, this derivation is slightly different compared to [20], where a differential pair with simple current mirror load is discussed.

With sufficiently small biasing voltage VB2 = VB5, drain-to-source voltages VDS15 and VDS16 of M15 and M16, respectively, are small enough to neglect the influence of the channel length modulation in these MOSFETs. So, assuming a simple quadratic model, the gate-to-source voltages VGS15 and VGS16 of M15 and M16, respectively, are given by

$$ V_{GS15} \approx \sqrt {\frac{{2I_{D15} }}{{\beta_{15} }}} + V_{t15} $$
(45)
$$ V_{GS15} \approx \sqrt {\frac{{2I_{D15} }}{{\beta_{15} }}} + V_{t15} $$
(46)

Using (35), (45), and (46) the following expression can be derived for the offset voltage VOFFDA2 caused by the imperfections of the differential pair M15–M16

$$ V_{OFFDA2} = V_{GS15} - V_{GS16} = V_{t15} - V_{t16} + \sqrt 2 \frac{{\sqrt {\beta_{16} I_{D15} } - \sqrt {\beta_{15} I_{D16} } }}{{\sqrt {\beta_{15} \beta_{16} } }} $$
(47)

Using the following substitutions: ΔVt1516 = Vt15 − Vt16, Δβ1516 = β15 − β16, β1516 = (β15 + β16)/2, ΔΙD1516 = ID15 − ID16, ID1516 = (ID15 + ID16)/2, the relation (47) is transformed into the following form

$$ V_{OFFDA2} \approx \Delta V_{t1516} + \sqrt {\frac{{I_{D1516} }}{{2\beta_{1516} }}} \left( {\frac{{\Delta I_{D1516} }}{{I_{D1516} }} - \frac{{\Delta \beta_{1516} }}{{\beta_{1516} }}} \right) $$
(48)

The relation (48) have been derived using the following approximation: (1 + x)1/2 ≈ 1 + x/2, for x ≪ 1. With sufficiently large biasing voltage VB4, source-to-drain voltages VSD19 and VSD20 of M19 and M20, respectively, are small enough to neglect the influence of the channel length modulation in these MOSFETs. So, assuming a simple quadratic model, the source-to-gate voltages VSG19 and VSG20 of M19 and M20, respectively, are given by

$$ V_{SG19} \approx \sqrt {\frac{{2I_{D19} }}{{\beta_{19} }}} - V_{t19} $$
(49)
$$ V_{SG20} \approx \sqrt {\frac{{2I_{D20} }}{{\beta_{20} }}} - V_{t20} $$
(50)

Because VSG19 = VSG20, the following relation can be derived using (49) and (50)

$$ V_{t19} - V_{t20} \approx \sqrt 2 \frac{{\sqrt {\beta_{20} I_{D19} } - \sqrt {\beta_{19} I_{D20} } }}{{\sqrt {\beta_{19} \beta_{20} } }} $$
(51)

Using the following substitutions: ΔVt1920 = Vt19 − Vt20, Δβ1920 = β19 − β20, β1920 = (β19 + β20)/2, ΔΙD1920 = ID19 − ID20, ID1920 = (ID19 + ID20)/2, the relation (51) is transformed into the following form

$$ \Delta V_{t1920} \approx \sqrt {\frac{{I_{D1920} }}{{2\beta_{1920} }}} \left( {\frac{{\Delta I_{D1920} }}{{I_{D1920} }} - \frac{{\Delta \beta_{1920} }}{{\beta_{1920} }}} \right) $$
(52)

The relation (52) have been derived using the following approximation: (1 + x)1/2 ≈ 1 + x/2, for x ≪ 1. Taking into account the fact that the drain currents of M15 and M19 are equal, ID15 = ID19, and that the drain currents of M16 and M20 are equal, ID16 = ID20, the following equalities are valid: ΔID1516 = ΔID1920, ID1516 = ID1920. Hence, the following expression can be derived from the relation (52)

$$ \frac{{\Delta I_{D1516} }}{{I_{D1516} }} = \frac{{\Delta I_{D1920} }}{{I_{D1920} }} \approx \frac{{\Delta \beta_{1920} }}{{\beta_{1920} }} + \sqrt {\frac{{2\beta_{1920} }}{{I_{D1920} }}} \Delta V_{t1920} $$
(53)

The offset voltage VOFFDA2 caused by the imperfections of the differential pair M15–M16 is obtained using (48) and (53)

$$ V_{OFFDA2} \approx \Delta V_{t1516} + \sqrt {\frac{{\beta_{1920} }}{{\beta_{1516} }}} \Delta V_{t1920} + \sqrt {\frac{{I_{D1516} }}{{2\beta_{1516} }}} \left( {\frac{{\Delta \beta_{1920} }}{{\beta_{1920} }} - \frac{{\Delta \beta_{1516} }}{{\beta_{1516} }}} \right) $$
(54)

The temperature coefficient the offset voltage VOFFDA2 (54) caused by the imperfections of the differential pair M15–M16 can be calculates as follows:

$$ \begin{aligned} \frac{{\partial V_{OFFDA2} }}{\partial T} & \approx \frac{1}{2}\Delta V_{t1920} \sqrt {\frac{{\beta_{1920} }}{{\beta_{1516} }}} \left( {\frac{1}{{\beta_{1920} }}\frac{{\partial \beta_{1920} }}{\partial T} - \frac{1}{{\beta_{1516} }}\frac{{\partial \beta_{1516} }}{\partial T}} \right) \\ & \quad + \frac{1}{2}\left( {\frac{{\Delta \beta_{1920} }}{{\beta_{1920} }} - \frac{{\Delta \beta_{1516} }}{{\beta_{1516} }}} \right)\sqrt {\frac{{I_{D1516} }}{{2\beta_{1516} }}} \left( {\frac{1}{{I_{D1516} }}\frac{{\partial I_{1516} }}{\partial T} - \frac{1}{{\beta_{1516} }}\frac{{\partial \beta_{1516} }}{\partial T}} \right) \\ \end{aligned} $$
(55)

Using (54), the relation (55) becomes

$$ \begin{aligned} \frac{{\partial V_{OFFDA2} }}{\partial T} & \approx \frac{1}{2}\Delta V_{t1920} \sqrt {\frac{{\beta_{1920} }}{{\beta_{1516} }}} \left( {\frac{1}{{\beta_{1920} }}\frac{{\partial \beta_{1920} }}{\partial T} - \frac{1}{{\beta_{1516} }}\frac{{\partial \beta_{1516} }}{\partial T}} \right) \\ & \quad + \frac{1}{2}\left( {V_{OFFDA2} - \Delta V_{t1516} - \sqrt {\frac{{\beta_{1920} }}{{\beta_{1516} }}} \Delta V_{t1920} } \right)\left( {\frac{1}{{I_{D1516} }}\frac{{\partial I_{1516} }}{\partial T} - \frac{1}{{\beta_{1516} }}\frac{{\partial \beta_{1516} }}{\partial T}} \right) \\ \end{aligned} $$
(56)

Finally, the temperature coefficient ∂VOFFOA2/∂T = ∂VOFFSF2/∂T + ∂VOFFSDA2/∂T of the offset voltage of OA2 is obtained using the relations (36), (44), and (56)

$$ \begin{aligned} \frac{{\partial V_{OFFOA2} }}{\partial T} & \approx \frac{1}{2}\left( {V_{OFFSF2} - \Delta V_{t2425} } \right)\left[ {\frac{1}{{V_{B67} + V_{t2425} }}\frac{{\partial \left( {V_{B67} + V_{t2425} } \right)}}{\partial T} - \frac{1}{{\beta_{2425} }}\frac{{\partial \beta_{2425} }}{\partial T} - \frac{1}{{R_{56} }}\frac{{\partial R_{56} }}{\partial T}} \right] \\ & \quad + \frac{1}{2}\Delta V_{t1920} \sqrt {\frac{{\beta_{1920} }}{{\beta_{1516} }}} \left( {\frac{1}{{\beta_{1920} }}\frac{{\partial \beta_{1920} }}{\partial T} - \frac{1}{{\beta_{1516} }}\frac{{\partial \beta_{1516} }}{\partial T}} \right) \\ & \quad + \frac{1}{2}\left( {V_{OFFDA2} - \Delta V_{t1516} - \sqrt {\frac{{\beta_{1920} }}{{\beta_{1516} }}} \Delta V_{t1920} } \right)\left( {\frac{1}{{I_{D1516} }}\frac{{\partial I_{D1516} }}{\partial T} - \frac{1}{{\beta_{1516} }}\frac{{\partial \beta_{1516} }}{\partial T}} \right) \\ \end{aligned} $$
(57)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tadić, N., Dervić, A., Erceg, M. et al. A 40 μW–30 mW generated power, 280 Ω–1.68 kΩ load resistance CMOS controllable constant-power source for thermally-based sensor applications. Analog Integr Circ Sig Process 106, 593–613 (2021). https://doi.org/10.1007/s10470-020-01687-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01687-w

Keywords

Navigation