Skip to main content

Advertisement

Log in

Layout optimization of planar inductors for high-efficiency integrated power converters

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The performance of dc–dc power converters is critically dependent on the inductors at their core. Planar spiral inductors are compact constructions that can be scaled and integrated without the limitations of traditional wire-wound devices. Therefore, they are increasingly employed to meet the needs of modern low-power applications, especially where size, weight and manufacturing costs are deciding factors. As a planar inductor is designed to fit the parameters of an application, it is paramount to take into account the associated parasitic effects that have an impact on the converter performance. This paper analyzes how the conversion efficiency of boost and buck integrated power converters depends on the parasitics elements of planar inductors, and how it can be improved by optimizing the inductor layout. In particular, the paper provides the guidelines for maximizing the time constant of the inductor by considering the different geometrical features that define the inductor shape. The trade-offs that maximize the inductance time constant for different shapes are introduced, and an algorithm is developed to optimize the performance with no area overhead. Finally, three boost converters are designed, simulated, and compared in a 65-nm CMOS technology to demonstrate the validity of the proposed approach, and the corresponding conversion efficiency improvement is assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mathúna, C. Ó., Wang, N., Kulkarni, S., & Roy, S. (2012). Review of integrated magnetics for power supply on chip (PwrSoC). IEEE Transactions on Power Electronics, 27(11), 4799–4816.

    Article  Google Scholar 

  2. Rose, M., & Bergveld, H. J. (2016). Integration trends in monolithic power ICs: Application and technology challenges. IEEE Journal of Solid-State Circuits, 51(9), 1965–1974.

    Article  Google Scholar 

  3. Li, J., Tseng, V. F., Xiao, Z., & Xie, H. (2017). A high-Q in-silicon power inductor designed for wafer-level integration of compact dc–dc converters. IEEE Transactions on Power Electronics, 32(5), 3858–3867.

    Article  Google Scholar 

  4. Pardue, C. A., Bellaredj, M. L. F., Davis, A. K., Swaminathan, M., Kohl, P., Fujii, T., et al. (2018). Design and characterization of inductors for self-powered IoT edge devices. IEEE Transactions on Components, Packaging and Manufacturing Technology, 8(7), 1263–1271.

    Article  Google Scholar 

  5. Richelli, A., Colalongo, L., Quarantelli, M., Carmina, M., & Kovács-Vajna, Z. M. (2004). A fully integrated inductor-based 1.8–6-V step-up converter. IEEE Journal of Solid-State Circuits, 39(1), 242–245.

    Article  Google Scholar 

  6. Wibben, J., & Harjani, R. (2008). A high-efficiency dc–dc converter using 2 nH integrated inductors. IEEE Journal of Solid-State Circuits, 43(4), 844–854.

    Article  Google Scholar 

  7. Wens, M., & Steyaert, M. S. J. (2011). A fully integrated CMOS 800-mW four-phase semiconstant on/off-time step-down converter. IEEE Transactions on Power Electronics, 26(2), 326–333.

    Article  Google Scholar 

  8. Kudva, S. S., & Harjani, R. (2011). Fully-integrated on-chip dc–dc converter with a 450X output range. IEEE Journal of Solid-State Circuits, 46(8), 1940–1951.

    Article  Google Scholar 

  9. Hernández, H., & Van Noije, W. (2015). Fully integrated boost converter for thermoelectric energy harvesting in 180 nm CMOS. Analog Integrated Circuits and Signal Processing, 82(1), 17–23.

    Article  Google Scholar 

  10. Tang, N., Nguyen, B., Molavi, R., Mirabbasi, S., Tang, Y., Zhang, P., et al. (2017). Fully integrated buck converter with fourth-order low-pass filter. IEEE Transactions on Power Electronics, 32(5), 3700–3707.

    Article  Google Scholar 

  11. Wens, M., & Steyaert, M. (2011). Design and implementation of fully-integrated dc–dc converters in standard CMOS. Dordrecht: Springer.

    Book  Google Scholar 

  12. Shaltout, A. H., Lipski, M., & Gregori, S. (2018). Efficiency model of fully-integrated boost dc–dc converters. In Proceedings of the IEEE international symposium on circuits and systems (ISCAS) (pp. 1–5).

  13. Aloisi, W., & Palumbo, G. (2005). Efficiency model of boost dc–dc PWM converters. International Journal of Circuit Theory and Applications, 33(5), 419–432.

    Article  Google Scholar 

  14. Ahn, Y., Nam, H., & Roh, J. (2012). A 50-MHz fully integrated low-swing buck converter using packaging inductors. IEEE Transactions on Power Electronics, 27(10), 4347–4356.

    Article  Google Scholar 

  15. Mohan, S. S., del Mar Hershenson, M., Boyd, S. P., & Lee, T. H. (1998). Simple accurate expressions for planar spiral inductances. IEEE Journal of Solid-State Circuits, 34(10), 1419–1424.

    Article  Google Scholar 

  16. Lakdawala, H., Zhu, X., Luo, H., Santhanam, S., Carley, L. R., & Fedder, G. K. (2002). Micromachined high-Q inductors in a 0.18-\(\mu\)m copper interconnect low-k dielectric CMOS process. IEEE Journal of Solid-State Circuits, 37(3), 394–403.

    Article  Google Scholar 

  17. Niknejad, A. M., & Meyer, R. G. (2000). Design, simulations, and applications of inductors and transformers for Si RF ICs. Norwell, MA: Kluwer.

    Google Scholar 

  18. Long, J. R., & Copeland, M. A. (1997). The modeling, characterization, and design of monolithic inductors for silicon RF IC’s. IEEE Journal of Solid-State Circuits, 32(3), 357–369.

    Article  Google Scholar 

  19. Nieuwoudt, A., McCorquodale, M. S., Borno, R. T., & Massoud, Y. (2006). Accurate analytical spiral inductor modeling techniques for efficient design space exploration. IEEE Electron Device Letters, 27(12), 998–1001.

    Article  Google Scholar 

  20. Ammouri, A., Ben-Salah, T., & Morel, H. (2018). A spiral planar inductor: An experimentally verified physically based model for frequency and time domains. International Journal of Numerical Modelling, 31(1), 1–13.

    Article  Google Scholar 

  21. Bechir, M. H., Yaya, D. D., Kahlouche, F., Soultan, M., Youssouf, K., Capraro, S., et al. (2016). Planar inductor equivalent circuit model taking into account magnetic permeability, loss tangent, skin and proximity effects versus frequency. Analog Integrated Circuits and Signal Processing, 88(1), 105–113.

    Article  Google Scholar 

  22. Crols, J., Kinget, P., Craninckx, J., & Steyaert, M. (1996). An analytical model of planar inductors on lowly doped silicon substrates for high frequency analog design up to 3 GHz. In Digest of technical papers of the symposium VLSI circuits (VLSI) (pp. 28–29).

  23. Ronkainen, H., Kattelus, H., Tarvainen, E., Ruhisaari, T., Andersson, M., & Kuivalainen, P. (1997). IC compatible planar inductors on silicon. IEE Proceedings-Circuits, Devices and Systems, 144(1), 29–35.

    Article  Google Scholar 

  24. Craninckx, J., & Steyaert, M. S. J. (1997). A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors. IEEE Journal of Solid-State Circuits, 32(5), 736–744.

    Article  Google Scholar 

  25. Wheeler, H. A. (1928). Simple inductance formulas for radio coils. Proceedings of the Institute of Radio Engineers, 16(10), 1398–1400.

    Google Scholar 

  26. Niknejad, A. M., & Meyer, R. G. (1998). Analysis, design, and optimization of spiral inductors and transformers for Si RF ICs. IEEE Journal of Solid-State Circuits, 33(10), 1470–1481.

    Article  Google Scholar 

  27. del Mar Hershenson, M., Mohan, S. S., Boyd, S. P., & Lee, T. H. (1999). Optimization of inductor circuits via geometric programming. In Proceedings of the design automation conference (DAC) (pp. 994–998).

  28. Shaltout, A. H., & Gregori, S. (2016). Conformal-mapping model for estimating the resistance of polygonal inductors. In Proceedings of the IEEE international symposium on circuits and systems (ISCAS) (pp. 1274–1277).

  29. Haobijam, G., & Paily, R. (2007). Efficient optimization of integrated spiral inductor with bounding of layout design parameters. Analog Integrated Circuits and Signal Processing, 51(3), 131–140.

    Article  Google Scholar 

  30. Shaltout, A. H., & Gregori, S. (2017). Design trade-offs of integrated polygonal inductors for dc–dc power converters. In Proceedings of the IEEE international symposium on circuits and systems (ISCAS) (pp. 1–4).

  31. Post, J. E. (2000). Optimizing the design of spiral inductors on silicon. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(1), 15–17.

    Article  Google Scholar 

  32. Nieuwoudt, A., & Massoud, Y. (2006). Variability-aware multilevel integrated spiral inductor synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(12), 2613–2625.

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN-2017-06305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Gregori.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaltout, A.H., Gregori, S. Layout optimization of planar inductors for high-efficiency integrated power converters. Analog Integr Circ Sig Process 102, 155–167 (2020). https://doi.org/10.1007/s10470-019-01494-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01494-y

Keywords

Navigation