Skip to main content
Log in

Simulation of the operation of a DC–DC converter containing an inductor of planar type

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents the design of a square planar spiral inductor, to integrate it into a DC–DC converter. The process of dimensioning of this integrated inductor has led us to identify all geometric parameters that are linked by a set of equations dedicated to this topology and to resolution of problems related to the substrate (skin effect, effect proximity, etc.). The equivalent electrical model adopted of the integrated inductor takes into account all the technological parameters which are described by analytic expressions. The results of different simulations concern the influence of geometry on the inductance value, on the different technological parameters and finally on its quality factor. In order to validate our dimensioning, we conducted simulations on the operating of our converter containing initially a conventional inductor and then a integrated inductor. Simulation results have shown that the waveforms of the current and output voltage in both cases are similar. This demonstrated the proper sizing of our integrated inductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Lopez-Villegas JM, Samitier J, Bausells J, Merlos A, Cané C, Knochel R (1997) Study of integrated RF passive components performed using CMOS and Si micromachining technologies. J Micromech Microeng 7:162–164

    Article  Google Scholar 

  2. Burns LM (1998) Integrated circuit technology options for RFIC’s-present status and future directions. IEEE J Solid State Circuits 33:387–399

    Article  Google Scholar 

  3. Estibals B, Sanchez J-L, Alonso C, Camonet H, Laur J-P (2003) Vers l’intégration de convertisseurs pour l’alimentation des microsystems. J3eA, Journal sur l’enseignement des sciences et technologies de l’information et des systèmes 2(Hors–Sèrie 2):5

    Google Scholar 

  4. Ribas RP, Lescot J, Leclercq J-L, Karam JM, Ndagijimana F (2000) Micromachined microwave planar spiral inductors and transformers. IEEE Trans Microw Theory Tech 48(8):1326–1326. doi:10.1109/22.859477

    Article  Google Scholar 

  5. Tang CC, Wu CH, Liu SI (2002) Miniature 3-D inductors in standard CMOS process. IEEE J Solid State Circuits 37(4):471–480

    Article  Google Scholar 

  6. Lu H-C, Chan TB, Chen CC-P, Liu C-M, Hsing H-J, Huang P-S (2010) LTCC spiral inductor synthesis and optimization with measurement verification. IEEE Trans Adv Packag 33(1):160–168. doi:10.1109/TADVP.2009.2028636

  7. Melati R, Hamid A, Thierry L, Derkaoui M (2013) Design of a new electrical model of a ferromagnetic planar inductor for its integration in a micro-converter. Math Comput Model 57(3):200–227

    Article  Google Scholar 

  8. Haddad E, Martin C, Joubert C, Allard B, Soueidan M, Lazar M, Buttay C, Payet-Gervy B (2011) Modeling, fabrication, and characterization of planar inductors on YIG substrates. In: Soueidan M, Roumié M, Pierre M (eds) Advanced materials research. Trans Tech Publications 324:294–297

  9. Guettaf Y, Rizouga M, Hamid A (2015) Design and modeling of a square planar inductor for a push pull converter. J Electr Electron Eng 8(1):17–22

    Google Scholar 

  10. Eroglu A (2011) Planar inductor design for high power applications. Prog Electromagn Res B 35:53–67

    Article  Google Scholar 

  11. Martin C, Allard B, Tournier D, Soueidan M, Rousseau JJ, Allassem D, Menager L, Bley V, Lembeye JY (2009) Planar inductors for high frequency DC–DC converters using microwave magnetic material. In: IEEE ECCE, pp 1890–1894

  12. Musunuri S, Chapman PL, Zou J, Liu C (2005) Design issues for monolithic DC–DC converters. IEEE Trans Power Electron 20:639–649

    Article  Google Scholar 

  13. Estibals B, Alonso C, Salles A, Schanen JL, Perret R (2001) Validation d’outils de simulation d’éléments inductifs pour convertisseur statique integé. IEE Eng Sci Educ J 10(5):197–205

    Article  Google Scholar 

  14. Karaarslan A (2016) The implementation of bee colony optimization control method for interleaved converter. Electr Eng 98:109–119

    Article  Google Scholar 

  15. Allaoui A, Hamid A, Spiteri P, Bley V, Lebey T (2015) Thermal modeling of an integrated inductor in a micro-converter. J Low Power Electron 11(1):63–73

    Article  Google Scholar 

  16. Pacurar C, Topa V, Munteanu C, Racasan A, Hebedean C (2013) Studies of inductance variation for square spiral inductors using CIBSOC software. Environ Eng Manag J 12:1161–1169

    Google Scholar 

  17. Ammouri A, Belloumi H, Salah TB (2014) Experimental analysis of planar spiral inductors. CISTEM 2014:1–5

    Google Scholar 

  18. Miranda CM, Pichorim SF (2015) Self-resonant frequencies of air-core single-layer solenoid coils calculated by a simple method. Electr Eng 97:57–64

    Article  Google Scholar 

  19. Talwalkar NA, Yue CP, Wong SS (2005) Analysis and synthesis of on-chip spiral inductors. IEEE Trans Electron Devices 52(2):176–182

    Article  Google Scholar 

  20. Yue CP, Ryu C, Lau J, Lee TH, Wong SS (1996) A physical model for planar spiral inductors on silicon. In: Electron devices meeting, IEDM ’96, international, pp 155–158

  21. Spanik P, Frivaldsky M, Drgona P, Cuntala J, Glapa N (2014) Design procedure of simple and accurate model of electric double layer capacitor (EDLC) targeting fast verification purposes of heat transfer simulations. Electr Eng 96:121–134

    Article  Google Scholar 

  22. Oh NJ, Lee S (2006) A simple model parameter extraction methodology for an on-chip spiral inductor. ETRI J 28(1):115–118

    Article  Google Scholar 

  23. Yue CP, Wong SS (2000) Physical modeling of spiral inductors on silicon. IEEE Trans Electron Devices 47(3):560–567

    Article  Google Scholar 

  24. Costa EMM (2009) Parasitic capacitances on planar coil. J Electromagn Waves Appl 23:2339–2350

    Article  Google Scholar 

  25. Mohan SS, Hershenson M, Boyd SP, Lee TH (1999) Simple accurate expressions for planar spiral inductances. IEEE J Solid State Circuits 34(10):1419–1424

    Article  Google Scholar 

  26. Chiou MH, Hsu KYJ (2006) A new wideband modeling technique for spiral inductors. IET Microw Antennas Propag 151:115–120

    Article  Google Scholar 

  27. François Leplus MHEl, TP d’électrotechnique par simulation préparation manipulation et solution par PSIMDEMO avec énergies renouvelables, 2nd edn. Book ellipses

  28. https://powersimtech.com/products/psim/hev-design-suite

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yacine Guettaf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guettaf, Y., Flitti, A., Bensaci, A. et al. Simulation of the operation of a DC–DC converter containing an inductor of planar type. Electr Eng 100, 953–969 (2018). https://doi.org/10.1007/s00202-017-0558-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-017-0558-7

Keywords

Navigation