Skip to main content
Log in

A low-power relaxation oscillator with high frequency stability for RFID

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A low-power relaxation oscillator with a high frequency stability is presented for radio frequency identification (RFID). This oscillator implements an improved self-biased and a comparator multiplexing techniques to reduce the power consumption and chip area. A capacitor resetting delay cancellation technique based on a two-phase operation and a proportional to absolute temperature (PTAT) current with an upward curvature versus the temperature are adopted to maintain the frequency stability. The oscillator is designed in a 65 nm standard CMOS process and occupies a small area of 0.0216 mm2. The post-layout simulation results show that a frequency drift of 0.95% from 0.7 to 1.7 V and a temperature stability of 27 ppm/°C as the temperature varies from − 40 to 85 °C at a typical working frequency of 1.92 MHz. Under a supply voltage of 0.7 V, the maximum power consumption is only 15.4 μW at − 40 °C. At room temperature, the figure of merit (FOM1 and FOM2) are 8 nW/kHz and 89.5 dB, respectively, which makes it more efficient than relaxation oscillators reported to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Want, R. (2006). An introduction to RFID technology. IEEE Pervasive Computing, 5(1), 25–33.

    Article  Google Scholar 

  2. Sun, M., Al-Sarawi, S. F., Ashenden, P., Cavaiuolo, M., & Ranasinghe, D. C. (2017). A fully integrated hybrid power management unit for passive UHF RFID in 130-nm process. IEEE Journal of Radio Frequency Identification, 1(1), 90–99.

    Article  Google Scholar 

  3. EPC Class 1 Generation 2 UHF air interface protocol standard version 2.0.1 [Online]. https://www.gs1.org/epcrfid/epc-rfid-uhf-air-interface-protocol/2-0-1. Accessed Jan 2018.

  4. Yoon, D., Sylvester, D., & Blaauw, D. (2012). A 5.58 nW 32.768 kHz DLL-assisted XO for real-time clocks in wireless sensing applications. In 2012 IEEE international solid-state circuits conference (pp. 366–368).

  5. Kamalinejad, P., Keikhosravy, K., Molavi, R., Mirabbasi, S., & Leung, V. C. M. (2014). An ultra-low-power CMOS voltage-controlled ring oscillator for passive RFID tags. In 2014 IEEE 12th international new circuits and systems conference (NEWCAS) (pp. 456–459).

  6. Flynn, M. P., & Lidholm, S. U. (1992). A 1.2-μm CMOS current-controlled oscillator. IEEE Journal of Solid-State Circuits, 27(7), 982–987.

    Article  Google Scholar 

  7. He, L., Li, G., & Tang, M. (2015). Relaxation oscillator exploiting PTAT hysteresis of differential schmitt trigger. Journal of Circuits Systems & Computers, 24(10), 15501471-1–15501471-9.

    Article  Google Scholar 

  8. Choi, M., Jang, T., Bang, S., Shi, Y., Blaauw, D., & Sylvester, D. (2016). A 110 nW Resistive frequency locked on-chip oscillator with 34.3 ppm/°C temperature stability for system-on-chip designs. IEEE Journal of Solid-State Circuits, 51(9), 2106–2118.

    Article  Google Scholar 

  9. Wang, J., Goh, W. L., Liu, X., & Zhou, J. (2016). A 12.77-MHz 31 ppm/°C on-chip RC relaxation oscillator with digital compensation technique. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(11), 1816–1824.

    Article  Google Scholar 

  10. Chiang, Y. H., & Liu, S. I. (2014). Nanopower CMOS relaxation oscillators with sub-100 ppm/°C temperature coefficient. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(9), 661–665.

    Article  Google Scholar 

  11. Zhu, J., Zhang, Y., Sun, W., & Yi, Y. (2014). Low-jitter, high-linearity current-controlled complementary metal oxide semiconductor relaxation oscillator with optimised floating capacitors. IET Circuits, Devices Systems, 8(6), 509–515.

    Article  Google Scholar 

  12. Xu, L., & Onabajo, M. (2015). A low-power temperature-compensated relaxation oscillator for built-in test signal generation. In 2015 IEEE 58th international midwest symposium on circuits and systems (MWSCAS) (pp. 1–4).

  13. Tokunaga, Y., Sakiyama, S., Matsumoto, A., & Dosho, S. (2010). An on-chip CMOS relaxation oscillator with voltage averaging feedback. IEEE Journal of Solid-State Circuits, 45(6), 1150–1158.

    Article  Google Scholar 

  14. Phillip, E. A., & Douglas, R. H. (2011). CMOS analog circuit design (3rd ed.). New York: Oxford University Press.

    Google Scholar 

  15. Calvo, B., Azcona, C., Medrano, N., & Celma, S. (2013). 1 V CMOS current references for wide-temperature range applications. Electronics Letters, 49(17), 1061–1063.

    Article  Google Scholar 

  16. Sadeghi, N., Sharif-Bakhtiar, A., & Mirabbasi, S. (2013). A 0.007-mm2 108-ppm/°C 1-MHz relaxation oscillator for high-temperature applications up to 180°C in 0.13-μm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(7), 1692–1701.

    Article  Google Scholar 

  17. Ni, Y., & Onabajo, M. (2014). A low-power temperature-compensated CMOS relaxation oscillator. Analog Integrated Circuits and Signal Processing, 79(2), 309–317.

    Article  Google Scholar 

  18. Xu, Z., Wang, W., Ning, N., Lim, W. M., Liu, Y., & Yu, Q. (2015). A supply voltage and temperature variation-tolerant relaxation oscillator for biomedical systems based on dynamic threshold and switched resistors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(4), 786–790.

    Article  Google Scholar 

  19. Mikulić, J., Schatzberger, G., & Barić, A. (2017). A 1-MHz on-chip relaxation oscillator with comparator delay cancelation. In 2017 43rd IEEE European solid state circuits conference (ESSCIRC) (pp. 95–98).

  20. Cao, Y., Leroux, P., Cock. W. D., & Steyaert, M. (2013). A 63,000 Q-factor relaxation oscillator with switched-capacitor integrated error feedback. In 2013 IEEE international solid-state circuits conference digest of technical papers (pp. 186–187).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanxin Bao.

Additional information

This work has been supported by the National Natural Science Foundation of China (No.61471119), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Topnotch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP) PPZY2015A035 and Academic Degree Postgraduate Innovation Project of Jiangsu Regular University (KYLX16-0215).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Li, W. & Wang, C. A low-power relaxation oscillator with high frequency stability for RFID. Analog Integr Circ Sig Process 98, 535–543 (2019). https://doi.org/10.1007/s10470-018-1338-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1338-7

Keywords

Navigation