Skip to main content

Low Power Current-Mode Relaxation Oscillators for Temperature and Supply Voltage Monitoring

  • Conference paper
  • First Online:
VLSI-SoC: Design Trends (VLSI-SoC 2020)

Abstract

This chapter presents a family of current-mode relaxation oscillators that can be designed either as a compensated digital clock source, or as an oscillator-based sensor whose frequency reports the temperature or supply voltage. One compensated timer implementation in 0.18 \(\upmu \)m CMOS achieves a figure of merit of 120 pW/kHz, making it one of the most efficient relaxation oscillators reported to date. The oscillator design is then extended to produce a \(V_{DD}\)-controlled oscillator and a temperature-controlled oscillator. Finally, we introduce a low-power hybrid oscillator sensor, which encodes measurements of both the supply voltage and temperature into the durations of its two alternating digital clock phases. The underlying dual-phase current-mode relaxation oscillator and the resulting sensor circuits are easy to implement, are area- and energy-efficient, and offer straightforward power and speed tradeoffs for a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferro, E., Brea, V.M., López, P., Cabello, D.: Micro-energy harvesting system including a pmu and a solar cell on the same substrate with cold startup from 2.38 nw and input power range up to 10 \(\upmu \)W using continuous MPPT. IEEE Trans. Power Electron. 34(6), 5105–5116 (2018)

    Google Scholar 

  2. Sadagopan, K.R., Kang, J., Ramadass, Y., Natarajan, A.: A cm-scale 2.4-GHz wireless energy harvester with nanowatt boost converter and antenna-rectifier resonance for WiFi powering of sensor nodes. IEEE J. Solid-State Circuits 53(12), 3396–3406 (2018)

    Google Scholar 

  3. Jia, Y., et al.: Wireless opto-electro neural interface for experiments with small freely behaving animals. J. Neural Eng. 154, 046032 (2018)

    Google Scholar 

  4. Anand, T., Makinwa, K.A., Hanumolu, P.K.: A VCO based highly digital temperature sensor with 0.034 \(^\circ \)/mV supply sensitivity. IEEE J. Solid-State Circuits 51(11), 2651–2663 (2016)

    Article  Google Scholar 

  5. Mordakhay, A., Shor, J.: Miniaturized, 0.01 mm\(^2\), resistor-based thermal sensor with an energy consumption of 0.9 nJ and a conversion time of 80 \(\upmu \)s for processor applications. IEEE J. Solid-State Circuits 53(10), 2958–2969 (2018)

    Article  Google Scholar 

  6. Dai, S., Rosenstein, J.K.: A 14.4 nW 122 kHz dual-phase current-mode relaxation oscillator for near-zero-power sensors. In: IEEE Custom Integrated Circuits Conference (CICC) (2015)

    Google Scholar 

  7. Dai, S., Tulloss, C.R., Lian, X., Hu, K., Reda, S., Rosenstein, J.K.: Temperature and supply voltage monitoring with current-mode relaxation oscillators. In: IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC) (2020)

    Google Scholar 

  8. Jiang, H., Wang, P.H.P., Mercier, P.P., Hall, D.A.: A 0.4-V 0.93-nW/kHz relaxation oscillator exploiting comparator temperature-dependent delay to achieve 94-ppm/\(^\circ \)C stability. IEEE J. Solid-State Circuits 53(10), 3004–3011 (2018)

    Article  Google Scholar 

  9. Banba, H., et al.: A CMOS bandgap reference circuit with sub-1-V operation. IEEE J. Solid-State Circuits 34(5), 670–674 (1999)

    Article  Google Scholar 

  10. Chen, S.W., Chang, M.H., Hsieh, W.C. Hwang, W.: Fully on-chip temperature, process, and voltage sensors. In: IEEE International Symposium on Circuits and Systems (ISCAS) (2010)

    Google Scholar 

  11. Kobayashi, A., Hayashi, K., Arata, S., Murakami, S., Xu, G., Niitsu, K.: A 65-nm CMOS 1.4-nW self-controlled dual-oscillator-based supply voltage monitor for biofuel-cell-combined biosensing systems. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2019)

    Google Scholar 

  12. Vezyrtzis, C., et al.: Droop mitigation using critical-path sensors and an on-chip distributed power supply estimation engine in the z14\(^{TM}\) enterprise processor. In: IEEE International Solid-State Circuits Conference (ISSCC) (2018)

    Google Scholar 

  13. Hsu, C.-H., Huang, S.-Y., Kwai, D.-M., Chou, Y.-F.: Worst-case IR-drop monitoring with 1 GHz sampling rate. In: International Symposium on VLSI Design, Automation, and Test, VLSI-DAT, pp. 1–4 (2013)

    Google Scholar 

  14. Makinwa, K.A.A.: Smart Temperature Sensor Survey. https://ei.ewi.tudelft.nl/docs/TSensor_survey.xls

  15. Pan, S., Luo, Y., Shalmany, S.H., Makinwa, K.A.: A resistor-based temperature sensor with a 0.13 pJ \(\cdot \) K\(^2\) resolution FoM. IEEE J. Solid-State Circuits 53(1), 164–173 (2018)

    Google Scholar 

  16. Park, H., Kim, J.: A 0.8-V resistor-based temperature sensor in 65-nm CMOS with supply sensitivity of 0.28 \(^\circ \)C/V. IEEE J. Solid-State Circuits 53(3), 906–912 (2018)

    Article  Google Scholar 

  17. Choi, W., et al.: A compact resistor-based CMOS temperature sensor with an inaccuracy of 0.12\(^{\circ }\)C (3\(\sigma \)) and a resolution FoM of 0.43 pJ \(\cdot \) K\(^2\) in 65-nm CMOS. IEEE J. Solid-State Circuits 53, 3356 (2018)

    Google Scholar 

  18. Sonmez, U., Sebastiano, F., Makinwa, K.A.: Compact thermal-diffusivity-based temperature sensors in 40 nm CMOS for SoC thermal monitoring. IEEE J. Solid-State Circuits 52(3), 834–843 (2017)

    Article  Google Scholar 

  19. Yang, K., et al.: A 0.6 nJ \(-\)0.22/+0.19 \(^\circ \)C inaccuracy temperature sensor using exponential subthreshold oscillation dependence. In: IEEE International Solid-State Circuits Conference (ISSCC), pp. 160–161 (2017)

    Google Scholar 

  20. Wang, X., Wang, P.H.P., Cao, Y., Mercier, P.P.: A 0.6 V 75 nW all-CMOS temperature sensor with 1.67 m\(^\circ \)/mV supply sensitivity. IEEE Trans. Circuits Syst. I Regular Papers (TCASi) 64(9), 2274–2283 (2017)

    Article  Google Scholar 

  21. Someya, Teruki, Mahfuzul Islam, A.K.M., Sakurai, T., Takamiya, M.: An 11-nW CMOS temperature-to-digital converter utilizing sub-threshold current at sub-thermal drain voltage. IEEE J. Solid-State Circuits 54(3), 613–622 (2019)

    Article  Google Scholar 

  22. Wang, B., Law, M.K., Tsui, C.Y., Bermak, A.: A 10.6 pJ\(\cdot \)K\(^2\) resolution FoM temperature sensor using a stable multi vibrator. IEEE Trans. Circuits Syst. II Express Briefs (TCASII) 65(7), 869–873 (2018)

    Article  Google Scholar 

  23. Said, M., Chetoui, S., Belouchrani, A., Reda, S.: Understanding the sources of power consumption in mobile SoCs. In: IEEE Ninth International Green and Sustainable Computing Conference (IGSC) (2018)

    Google Scholar 

  24. Piguet, C.: Logic synthesis of race-free asynchronous CMOS circuits. IEEE J. Solid-State Circuits 26(3), 371–380 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded in part by grant FA8650-18-2-7851 from the Defense Advanced Research Projects Agency (DARPA). C. R. Tulloss is also grateful for support from the Jayakumar Undergraduate Summer Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob K. Rosenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, S., Tulloss, C.R., Lian, X., Hu, K., Reda, S., Rosenstein, J.K. (2021). Low Power Current-Mode Relaxation Oscillators for Temperature and Supply Voltage Monitoring. In: Calimera, A., Gaillardon, PE., Korgaonkar, K., Kvatinsky, S., Reis, R. (eds) VLSI-SoC: Design Trends. VLSI-SoC 2020. IFIP Advances in Information and Communication Technology, vol 621. Springer, Cham. https://doi.org/10.1007/978-3-030-81641-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81641-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81640-7

  • Online ISBN: 978-3-030-81641-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics