Skip to main content
Log in

Implementation and Simulation of Fractional Order Chaotic Circuits with Time-Delay

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The potential application of nonlinear systems and time delay, has a resulted in increasing attention to such systems. In this paper, we designed numerical and circuit models for synchronisation of fractional-order chaotic systems with time delay. Also two fractional order Sprott chaotic systems with time delay is used systems, and, the control circuit is designed for synchronization of the chaotic systems. To provide time delay, all pass filter circuit model has been used. Global stability for the synchronisation is defined according to Lyapunov stability criteria and according to the stability method, the input range is determined to make the system stable. The paper is presented numerical solution of fractional order systems with time delay and designed the circuit model of the system. For different time delay values, the changes in the errors of synchronisation were examined. Finally the results of numerical simulations were compared with the results of circuit analysis to verify the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Miller, S. M., & Bertram, R. (1993). An ıntroduction to the fractional calculus and fractional differential equationsno title. New York: Wiley.

    Google Scholar 

  2. Oustaloup, A., Levron, F., Mathieu, B., & Nanot, F. M. (2000). Frequency-band complex noninteger differentiator: Characterization and synthesis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(1), 25–39. https://doi.org/10.1109/81.817385.

    Article  Google Scholar 

  3. Odibat, Z. (2012). A note on phase synchronization in coupled chaotic fractional order systems. Nonlinear Analysis: Real World Applications, 13(2), 779–789. https://doi.org/10.1016/j.nonrwa.2011.08.016.

    Article  MathSciNet  MATH  Google Scholar 

  4. El-Sayed, A. M. A., Nour, H. M., Elsaid, A., Matouk, A. E., & Elsonbaty, A. (2016). Dynamical behaviors, circuit realization, chaos control, and synchronization of a new fractional order hyperchaotic system. Applied Mathematical Modelling, 40(5–6), 3516–3534. https://doi.org/10.1016/j.apm.2015.10.010.

    Article  MathSciNet  Google Scholar 

  5. Xue, D., Chen, Y., & Atherton, D. P. (2008). Linear feedback control analysis and design with MATLAB. USA: SIAM.

    MATH  Google Scholar 

  6. Tuntas, R. (2015). A new intelligent hardware implementation based on field programmable gate array for chaotic systems. Applied Soft Computing, 35, 237–246. https://doi.org/10.1016/j.asoc.2015.06.039.

    Article  Google Scholar 

  7. Hu, W., Yu, Y., & Zhang, S. (2015). A hybrid artificial bee colony algorithm for parameter identification of uncertain fractional-order chaotic systems. Nonlinear Dynamics, 82(3), 1441–1456. https://doi.org/10.1007/s11071-015-2251-6.

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao, Y., Liang, C., Wu, Q., & Yuan, H. (2015). A new fractional-order hyperchaotic system and its modified projective synchronization. Chaos, Solitons & Fractals, 76, 190–204. https://doi.org/10.1016/j.chaos.2015.04.003.

    Article  MathSciNet  MATH  Google Scholar 

  9. Caponetto, R., Dongola, G., Fortuna, L., & Gallo, A. (2010). New results on the synthesis of FO-PID controllers. Communications in Nonlinear Science and Numerical Simulation, 15(4), 997–1007. https://doi.org/10.1016/j.cnsns.2009.05.040.

    Article  MathSciNet  MATH  Google Scholar 

  10. Biswas, A., Das, S., Abraham, A., & Dasgupta, S. (2009). Design of fractional-order PIλDμ controllers with an improved differential evolution. Engineering Applications of Artificial Intelligence, 22(2), 343–350. https://doi.org/10.1016/j.engappai.2008.06.003.

    Article  Google Scholar 

  11. Çelik, V. (2015). Bifurcation analysis of fractional order single cell with delay. International Journal of Bifurcation and Chaos, 25(2), 1550020. https://doi.org/10.1142/S0218127415500200.

    Article  MathSciNet  MATH  Google Scholar 

  12. Radwan, A. G., Moaddy, K., Salama, K. N., Momani, S., & Hashim, I. (2014). Control and switching synchronization of fractional order chaotic systems using active control technique. Journal of Advanced Research, 5(1), 125–132. https://doi.org/10.1016/j.jare.2013.01.003.

    Article  Google Scholar 

  13. Gao, F., Lee, X., Fei, F., Tong, H., Deng, Y., & Zhao, H. (2014). Identification time-delayed fractional order chaos with functional extrema model via differential evolution. Expert Systems with Applications, 41(4), 1601–1608. https://doi.org/10.1016/j.eswa.2013.08.057.

    Article  Google Scholar 

  14. Matouk, A. E., & Elsadany, A. A. (2014). Achieving synchronization between the fractional-order hyperchaotic Novel and Chen systems via a new nonlinear control technique. Applied Mathematics Letters, 29, 30–35. https://doi.org/10.1016/j.aml.2013.10.010.

    Article  MathSciNet  MATH  Google Scholar 

  15. Mahmoud, G. M., Arafa, A. A., Abed-Elhameed, T. M., & Mahmoud, E. E. (2017). Chaos control of integer and fractional orders of chaotic Burke-Shaw system using time delayed feedback control. Chaos, Solitons & Fractals, 104, 680–692. https://doi.org/10.1016/j.chaos.2017.09.023.

    Article  MathSciNet  MATH  Google Scholar 

  16. Hou, Y.-Y. (2017). Design and implementation of EP-based PID controller for chaos synchronization of Rikitake circuit systems. ISA Transactions, 70, 260–268. https://doi.org/10.1016/j.isatra.2017.04.016.

    Article  Google Scholar 

  17. Arena, P., Caponetto, R., Fortuna, L., & Porto, D. (1998). Bifurcation and chaos in noninteger order cellular neural networks. International Journal of Bifurcation and Chaos, 8(7), 1527–1539. https://doi.org/10.1142/S0218127498001170.

    Article  MATH  Google Scholar 

  18. Deng, W. H., & Li, C. P. (2005). Chaos synchronization of the fractional Lü system. Physica A: Statistical Mechanics and its Applications, 353, 61–72. https://doi.org/10.1016/j.physa.2005.01.021.

    Article  Google Scholar 

  19. Atan, O., Turk, M., & Tuntas, R. (2013). Fractional order controller design for fractional order chaotic synchronization. International Journal of Natural and Engineering Sciences, 7(1), 71–77.

    Google Scholar 

  20. Atan, O., Chen, D., & Türk, M. (2016). Fractional order PID and application of its circuit model. Journal of the Chinese Institute of Engineers. https://doi.org/10.1080/02533839.2016.1187080.

    Google Scholar 

  21. Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64(8), 821–824. https://doi.org/10.1103/PhysRevLett.64.821.

    Article  MathSciNet  MATH  Google Scholar 

  22. Boulkroune, A., & M’saad, M. (2012). Fuzzy adaptive observer-based projective synchronization for nonlinear systems with input nonlinearity. Journal of Vibration and Control, 18(3), 437–450. https://doi.org/10.1177/1077546311411228.

    Article  MathSciNet  MATH  Google Scholar 

  23. He, S., Sun, K., & Wang, H. (2016). Synchronisation of fractional-order time delayed chaotic systems with ring connection. The European Physical Journal Special Topics, 225(1), 97–106. https://doi.org/10.1140/epjst/e2016-02610-3.

    Article  Google Scholar 

  24. Li, D., Zhang, X., Hu, Y., & Yang, Y. (2015). Adaptive impulsive synchronization of fractional order chaotic system with uncertain and unknown parameters. Neurocomputing, 167, 165–171. https://doi.org/10.1016/j.neucom.2015.04.081.

    Article  Google Scholar 

  25. Shao, S., Chen, M., & Yan, X. (2016). Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance. Nonlinear Dynamics, 83(4), 1855–1866. https://doi.org/10.1007/s11071-015-2450-1.

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, S., Yu, Y., & Wen, G. (2014). Hybrid projective synchronization of time-delayed fractional order chaotic systems. Nonlinear Analysis: Hybrid Systems, 11, 129–138. https://doi.org/10.1016/j.nahs.2013.07.004.

    MathSciNet  MATH  Google Scholar 

  27. Lin, Tsung-Chih, & Lee, Tun-Yuan. (2011). chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Transactions on Fuzzy Systems, 19(4), 623–635. https://doi.org/10.1109/TFUZZ.2011.2127482.

    Article  Google Scholar 

  28. Tang, J. (2014). synchronization of different fractional order time-delay chaotic systems using active control. Mathematical Problems in Engineering, 2014, 1–11. https://doi.org/10.1155/2014/262151.

    MathSciNet  Google Scholar 

  29. Ahmad, W. M., & Sprott, J. C. (2003). Chaos in fractional-order autonomous nonlinear systems. Chaos, Solitons & Fractals, 16(2), 339–351. https://doi.org/10.1016/S0960-0779(02)00438-1.

    Article  MATH  Google Scholar 

  30. Jia, H. Y., Chen, Z. Q., & Qi, G. Y. (2014). Chaotic characteristics analysis and circuit ımplementation for a fractional-order system. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(3), 845–853. https://doi.org/10.1109/TCSI.2013.2283999.

    Article  Google Scholar 

  31. Xiang-Rong, C., Chong-Xin, L., & Fa-Qiang, W. (2008). Circuit realization of the fractional-order unified chaotic system. Chinese Physics B, 17(5), 1664–1669. https://doi.org/10.1088/1674-1056/17/5/022.

    Article  Google Scholar 

  32. Chen, D., Liu, C., Wu, C., Liu, Y., Ma, X., & You, Y. (2012). A new fractional-order chaotic system and its synchronization with circuit simulation. Circuits, Systems, and Signal Processing, 31(5), 1599–1613. https://doi.org/10.1007/s00034-012-9408-z.

    Article  MathSciNet  Google Scholar 

  33. Jun-Jie, L., & Chong-Xin, L. (2007). Realization of fractional-order Liu chaotic system by circuit. Chinese Physics, 16(6), 1586–1590. https://doi.org/10.1088/1009-1963/16/6/016.

    Article  Google Scholar 

  34. Buscarino, A., Fortuna, L., Frasca, M., & Sciuto, G. (2011). Design of time-delay chaotic electronic circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(8), 1888–1896. https://doi.org/10.1109/TCSI.2011.2107190.

    Article  MathSciNet  Google Scholar 

  35. Banerjee, T. (2012). Design of chaotic and hyperchaotic time-delayed electronic circuit. Bonfring International Journal of Power Systems and Integrated Circuits, 2(4), 13–17. https://doi.org/10.9756/BIJPSIC.3138.

    Article  Google Scholar 

  36. Biswas, D., & Banerjee, T. (2016). A simple chaotic and hyperchaotic time-delay system: Design and electronic circuit implementation. Nonlinear Dynamics, 83(4), 2331–2347. https://doi.org/10.1007/s11071-015-2484-4.

    Article  MathSciNet  Google Scholar 

  37. Ablay, G. (2015). Novel chaotic delay systems and electronic circuit solutions. Nonlinear Dynamics, 81(4), 1795–1804. https://doi.org/10.1007/s11071-015-2107-0.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozkan Atan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atan, O. Implementation and Simulation of Fractional Order Chaotic Circuits with Time-Delay. Analog Integr Circ Sig Process 96, 485–494 (2018). https://doi.org/10.1007/s10470-018-1189-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1189-2

Keywords

Navigation