Skip to main content
Log in

A fast locked and low phase noise all-digital phase locked loop based on model predictive control

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

An all-digital phase locked loop (ADPLL) taking new approach for design of the loop filter is presented. A feedback loop in the time domain by modeling the DCO and TDC as an appropriate model in the state-space form is proposed. Then, a model predictive control (MPC) method for designing loop filter in order to generate an optimal control signal is employed. The proposed loop filter can overcome latency issue that inevitably exists in most of digital systems. Furthermore, the proposed MPC loop filter achieves rapid transient response time and enables us to model other noise sources resulted from oscillator pulling and flicker noise which are common problems in many modern transceivers and the effects of which can be dramatically removed without degrading the overall phase noise performance. Simulation results confirm the capability of the proposed design and show it is significantly more robustness against these problems compared to conventional digital PLL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Gardner, F. M. (2005). Phaselock techniques (3rd ed.). Hoboken: Wiley.

    Book  Google Scholar 

  2. Hwang, I.-C., Song, S.-H., & Kim, S.-W. (2001). A digitally controlled phase-locked loop with a digital phase-frequency detector for fast acquisition. IEEE Journal of Solid-State Circuits, 36(10), 1574–1581.

    Article  Google Scholar 

  3. Lin, J., Haroun, B., Foo, T., Helmick, B., Randall, S., Mayhugh, T., Barr, C., & Kirkpatric, J. (2004). A PVT tolerant 0.18 MHz to 600 MHz self-calibrated digital PLL in 90 nm CMOS process. In 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No. 04CH37519), pp. 488–541.

  4. Ho, Y.-H., & Yao, C.-Y. (2016). A low-jitter fast-locked all-digital phase-locked loop with phase–frequency-error compensation. IEEE Transaction on Very Large Scale Integration Systems, 24(5), 1984–1992.

    Article  Google Scholar 

  5. Staszewski, R. B., Wallberg, J., Rezeq, S., Eliezer, O., Vemulapalli, S., Staszewski, R., et al. (2005). All-digital PLL and GSM, edge transmitter in 90 nm CMOS”, in ISSCC. IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005(2005), 316–318.

    Google Scholar 

  6. Staszewski, R. B., Fernando, C., & Balsara, P. T. (2005). Event-driven simulation and modeling of phase noise of an RF oscillator. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(4), 723–733.

    Article  Google Scholar 

  7. Kratyuk, V., Hanumolu, P. K., Ok, K., & Mayaram, K. (2009). A digital PLL with a stochastic time-to-digital converter. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(8), 1612–1621.

    Article  MathSciNet  Google Scholar 

  8. Wu, W., Staszewski, R. B., & Long, J. R. (2014). A 56.4-to-63.4 GHz multi-rate all-digital fractional-N PLL for FMCW radar applications in 65 nm CMOS. IEEE Journal of Solid-State Circuits, 49(5), 1081–1096.

    Article  Google Scholar 

  9. Razavi, B. (1996). Monolithic phase-locked loops and clock recovery circuits. New York: IEEE Press.

    Book  Google Scholar 

  10. Razavi, B. (2004). A study of injection locking and pulling in oscillators. IEEE Journal of Solid-State Circuits, 39(9), 1415–1424.

    Article  Google Scholar 

  11. Namgoong, W. (2010). Observer-controller digital PLL. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(3), 631–641.

    Article  MathSciNet  Google Scholar 

  12. Mendel, S., & Vogel, C. (2007). A z-domain model and analysis of phase-domain all-digital phase-locked loops. Norchip, 2007, 1–6.

    Google Scholar 

  13. Bergmans, J. W. M. (2005). Effect of loop delay on phase margin of first-order and second-order control loops. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(10), 621–625.

    Article  Google Scholar 

  14. Staszewski, R. B., & Balsara, P. T. (2006). All-digital frequency synthesizer in deep-submicron CMOS. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  15. Mendel, S., Vogel, C., & Da Dalt, N. (2009). Mixed design of integrated circuits & systems, 2009. In MIXDES’09. MIXDES-16th International Conference, pp. 681–687.

  16. Mendel, S., Vogel, C., & Da Dalt, N. (2009). A phase-domain all-digital phase-locked loop architecture without reference clock retiming. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(11), 860–864.

    Article  Google Scholar 

  17. Mendel, S., & Vogel, C. (2008). Improved lock-time in all-digital phase-locked loops due to binary search acquisition. In 2008 15th IEEE International Conference on Electronics, Circuits and Systems, pp. 384–387.

  18. Namgoong, W. (2016). An all-digital approach to supply noise cancellation in digital phase-locked loop. IEEE Transaction on Very Large Scale Integration Systems, 24(3), 1025–1035.

    Article  Google Scholar 

  19. Bolognani, S., Peretti, L., & Zigliotto, M. (2009). Design and implementation of model predictive control for electrical motor drives. IEEE Transactions on Industrial Electronics, 56(6), 1925–1936.

    Article  Google Scholar 

  20. Kwon, W. H., Han, S., & Han, S. H. (2005). Receding horizon control: Model predictive control for state models. London: Springer.

    Google Scholar 

  21. Landau, I. D., Lozano, R., M’Saad, M., & Karimi, A. (2011). Adaptive control: Algorithms, analysis and applications. New York: Springer.

    Book  MATH  Google Scholar 

  22. Wang, L. (2009). Model predictive control system design and implementation using MATLAB ®. London: Springer.

    MATH  Google Scholar 

  23. Löfberg, J. (2003). Minimax approaches to robust model predictive control. Linköping: Linköping University Electronic Press.

    Google Scholar 

  24. Hartley, E. N., & Maciejowski, J. M. (2011). Designing MPC controllers by reverse-engineering existing LTI controllers.

  25. Ogata, K. (2002). Modern control engineering (Vol. 17). Boca Raton: CRC Press.

    MATH  Google Scholar 

  26. Sayadi, M., Farshidi, E., & Ghaffari, V. (2012). A fast digital phase locked loop based on model predictive controller. In 20th Iranian Conference on Electrical Engineering (ICEE2012), pp. 65–69.

  27. Knagge, G., Wills, A., Mills, A., & Ninness, B. (2009). ASIC and FPGA implementation strategies for model predictive control. In European Control Conference ECC 2009.

  28. Agarwal, V., Gupta, M., Gupta, U., & Saraswat, R. (2014). A model predictive controller using multiple linear models for continuous stirred tank reactor (CSTR) and ITS implementation issue. In Communication Systems and Network Technologies (CSNT), 2014 Fourth International Conference on, no. 1, pp. 1001–1005.

  29. Adler, R. (1973). Study of locking phenomena in oscillators. Proceedings of the IEEE, 61(10), 1380–1385.

    Article  Google Scholar 

  30. Razavi, B. (2004). A study of injection locking and pulling in oscillators. IEEE Journal of Solid-State Circuits, 39(9), 1415–1424.

    Article  Google Scholar 

  31. Namgoong, Won. (2010). Flicker noise in observer-controller digital PLL. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(7), 556–560.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Farshidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayadi, M., Farshidi, E. A fast locked and low phase noise all-digital phase locked loop based on model predictive control. Analog Integr Circ Sig Process 88, 401–414 (2016). https://doi.org/10.1007/s10470-016-0794-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0794-1

Keywords

Navigation