Skip to main content
Log in

Design of low-noise transimpedance amplifiers with capacitive feedback

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper reports on a new topology and design methodology for ultra-low noise and high-gain transimpedance amplifiers. This paper also reports on measurement results of two implemented ICs based on the proposed topology and fabricated in 130 nm IBM and 180 nm TSMC technologies. A capacitive feedback topology is implemented as a noise-efficient feedback network, analytical noise calculations in this family of TIA circuits are presented, and optimum noise criterion is derived. The saturation and instability problem of TIA circuits resulted from DC dark current of the input photodiodes is also addressed and a simple yet efficient feedback solution is proposed. The measurement results of 130 nm chip show average input referred noise of 2.67 pA/√Hz with bandwidth of 81 kHz to 1.76 GHz and transimpedance gain of 76 dBΩ while dissipating 13.7 mW from a 1.5 V power supply, including the output buffer. The measurement results of 180 nm chip show average input referred noise of 3.18 pA/√Hz with bandwidth of 72 kHz to 1.62 GHz and transimpedance gain of 75 dBΩ while dissipating 26.3 mW from a 2.2 V power supply, including the output buffer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Branton, D., et al. (2008). The potential and challenges of nanopore sequencing. Nature Biotechnology, 26, 1146–1153, ISSN 1087-0156.

  2. Crescentini, M., Bennati, M., Carminati, M., & Tartagni, M. (2014). Noise limits of CMOS current interfaces for biosensors: A review. IEEE Transactions on Biomedical Circuits and Systems, 8(2), 278–292. (IEEEXplore Early Access).

    Article  Google Scholar 

  3. Shahdoost, S., Medi, A., Bozorgzadeh, B., & Saniei, N. (2014). A novel design methodology for low-noise and high-gain transimpedance amplifiers. In 2014 Argentine conference on micro-nanoelectronics, technology and applications (EAMTA), 24–25 July 2014 (pp. 77–82).

  4. Ibrahim, M. M. R., & Levine, P. M. (2014). CMOS transimpedance amplifier for biosensor signal acquisition. In 2014 IEEE international symposium on circuits and systems (ISCAS), 1–5 June 2014 (pp. 25–28).

  5. Razavi, B. (2012). Design of integrated circuits for optical communications (2nd ed.). New Jersey: Wiley.

    Google Scholar 

  6. Shahdoost, S., Bozorgzadeh, B., Medi, A., & Saniei, N. (2014). Low-noise transimpedance amplifier design procedure for optical communications. In 22nd Austrian workshop on microelectronics (Austrochip), 9 Oct 2014 (pp. 1–5).

  7. Moeneclaey, B., Verbrugghe, J., Blache, F., Goix, M., Lanteri, D., Duval, B., et al. (2015). A 40-Gb/s transimpedance amplifier for optical links. IEEE Photonics Technology Letters, 27(13), 1375–1378.

    Article  Google Scholar 

  8. Deshours, F., Alquie, G., Abib, G. I., Grard, E., Rodrigues, V., Leclerc, E., et al. (2015). Optical transimpedance receiver for high data transmission in OFDM modulation format. Journal of Lightwave Technology, 33(10), 2004–2011.

    Article  Google Scholar 

  9. De Medeiros Silva, M., & Oliveira, L. B. (2014). Regulated common-gate transimpedance amplifier designed to operate with a silicon photo-multiplier at the input. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(3), 725–735.

    Article  Google Scholar 

  10. Young-Ho Kim; Eui-Suk Jung; Sang-Soo Lee. (2014). Bandwidth enhancement technique for CMOS RGC transimpedance amplifier. Electronics Letters, 50(12), 882–884.

    Article  Google Scholar 

  11. Yoon, T., & Jalali, B. (1997). 1 Gbit/s fiber channel CMOS transimpedance amplifier. Electronics Letters, 33(7), 588–589.

    Article  Google Scholar 

  12. Shahdoost, S., Medi, A., & Saniei, N. (2011). A 1.93 pA/√Hz transimpedance amplifier for 2.5 Gb/s optical communications. In 2011 IEEE international symposium on circuits and systems (ISCAS), 15–18 May 2011 (pp. 2889–2892).

  13. Taghavi, M. H., Belostotski, L., & Haslett, J. W. (2015). A CMOS low-power cross-coupled immittance-converter transimpedance amplifier. IEEE Microwave and Wireless Components Letters, 25(6), 403–405.

    Article  Google Scholar 

  14. Chen, D., Yeo, K. S., Shi, X., Do, M. A., Boon, C. C., & Lim, W. M. (2013). Cross-coupled current conveyor based CMOS transimpedance amplifier for broadband data transmission. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(8), 1516–1525.

    Article  Google Scholar 

  15. Lu, Z., Yeo, K.-S., Lim, W. M., Do, A. V., & Boon, C. C. (2010). Design of a CMOS broadband transimpedance amplifier with active feedback. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 18(3), 461–472.

    Article  Google Scholar 

  16. Aflatouni, F., & Hashemi, H. (2009). A 1.8 mW wideband 57 dBΩ transimpedance amplifier in 0.13 µm CMOS. In 2009 IEEE radio frequency integrated circuits symposium. RFIC 2009, 7–9 June 2009 (pp. 57–60).

  17. Atef, M., & Zimmermann, H. (2012). 2.5 Gbit/s transimpedance amplifier using noise cancelling for optical receivers. In 2012 IEEE international symposium on circuits and systems (ISCAS), 20–23 May 2012 (pp. 1740–1743).

  18. Chuah, J., & Holburn, D. (2015). Design of low-noise high-gain CMOS transimpedance amplifier for intelligent sensing of secondary electrons. IEEE Sensors Journal, 15(10), 5997–6004.

    Article  Google Scholar 

  19. Kimble, Christopher J., P.A., Lee, K.H. (2009). Wireless instantaneous neurotransmitter concentration sensing system (WINCS) for intraoperative neurochemical monitoring. In 2009 Annual international conference of the IEEE engineering in medicine and biology society. EMBC 2009, 3–6 Sept 2009 (pp. 4856–4859).

  20. Liu, T., Bihr, U., Becker, J., Anders, J., Ortmanns, M. (2014). In vivo verification of a 100 Mbps transcutaneous optical telemetric link. In 2014 IEEE biomedical circuits and systems conference (BioCAS), 22–24 Oct 2014 (pp. 580–583).

Download references

Acknowledgments

This work was part of a project in photonics group of University of Toronto under supervision of Professor Li Qian and was partially funded by University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahab Shahdoost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahdoost, S., Medi, A. & Saniei, N. Design of low-noise transimpedance amplifiers with capacitive feedback. Analog Integr Circ Sig Process 86, 233–240 (2016). https://doi.org/10.1007/s10470-015-0669-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0669-x

Keywords

Navigation