Skip to main content
Log in

24 Channel dual-band wireless neural recorder with activity-dependent power consumption

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A complete light weight 24 channel wireless neural recording system enabled by a custom IC is presented. By transmitting only the action potential (AP) data, the system power consumption is scaled based on the activity of the neural signal. By detecting an AP event prior to digitization, the ASIC can reduce the power consumed in all subsequent stages and yet conserves the entire AP shape without affecting the classification performance. The complete 2.5 cm3 head stage weighing below 7 g can operate for 3 h. The ASIC achieves <3.5 µVrms noise (both in AP and LFP band) and >70 dB CMRR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Brown, E., Kass, R. E., & Mitra, P. P. (2004). Multiple neural spike train data analysis: state-of-the-art and future challenge. Nature Neuroscience, 7, 456–461.

    Article  Google Scholar 

  2. Harrison, R. R., Watkins, P. T., Kier, R. J., Lovejoy, R. O., Black, D. J., Greger, B., & Solzbacher, F. (2007). A Low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE Journal of Solid-State Circuits, 42(1), 123–133.

    Article  Google Scholar 

  3. Bedard, C., Kroger, H., & Destexhe, A. (2004). Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophysical Journal, 86, 1829–1842.

    Article  Google Scholar 

  4. Gray, C. M., & Wilson, P. E. (1995). Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. Journal of Neuroscience Methods, 63(1–2), 43–45.

    Article  Google Scholar 

  5. Lopez, C. M., Andrei, A., Mitra, S., Welkenhuysen, M., Eberle, W., Bartic, C., et al. (2013). Solid-State Circuits Conference Digest of Technical Papers (ISSCC). IEEE International, 2013, 288–289.

    Google Scholar 

  6. Gosselin, B., Ayoub, A. E., Roy, J.-F., Sawan, M., Lepore, F., Chaudhuri, A., & Guitton, D. (2009). A mixed-signal multichip neural recording interface with bandwidth reduction. Biomedical Circuits and Systems, IEEE Transactions on, 3(3), 129–141.

    Article  Google Scholar 

  7. Awais, K. M., Andrew, M. J. (2010). On-chip feature extraction for spike sorting in high density implantable neural recording systems. Biomedical Circuits and Systems Conference (BioCAS), 13–16.

  8. Rodriguez-Perez, A., Ruiz-Amaya, J., Delgado-Restituto, M., & Rodriguez-Vazquez, A. (2012). A low-power programmable neural spike detection channel with embedded calibration and data compression. Biomedical Circuits and Systems, IEEE Transactions on, 6(2), 87–100.

    Article  Google Scholar 

  9. Harris, K., Henze, D., Csicsvari, J., Hirase, H., & Buzsaki, G. (2000). Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. Journal of Neurophysiology, 84, 401–414.

    Google Scholar 

  10. Gosselin, B., & Sawan, M. (2009). An ultra low-power CMOS automatic action potential detector. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 17(4), 346–353.

    Article  Google Scholar 

  11. nRF24L01+. (2008, September). Single Chip 2.4 GHz Transceiver (Rev. 1.0) [Online]. Available: http://www.nordicsemi.com.

  12. STM32F205xx-STM32F207xx. (2012, April). [Online]. Available: http://www.st.com.

  13. Harrison, R. R., & Charles, C. (2003). A low-power low-noise CMOS amplifier for neural recording applications. Solid-State Circuits, IEEE Journal of, 38(6), 958–965.

    Article  Google Scholar 

  14. Holleman, J., Otis, B., (2007). A sub-microwatt low-noise amplifier for neural recording, Engineering in Medicine and Biology Society, EMBS 2007. 29th Annual International Conference of the IEEE.

  15. Wu, H., Xu, Y. P., (2006) A 1 V 2.3/spl mu/W Biomedical Signal Acquisition IC. Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE International, 119(128), 6–9.

  16. Greenwald, E., Mollazadeh, M., Hu, C., Tang, W., Culurciello, E., & Thakor, N. V. (2011). A VLSI neural monitoring system with ultra-wideband telemetry for awake behaving subjects. Biomedical Circuits and Systems, IEEE Transactions on, 5(2), 112–119.

    Article  Google Scholar 

  17. Szuts, T. A., et al. (2011). A Wireless multi-channel neural amplifier for freely moving animals”. Nature Neuroscience, 14(2), 263–269.

    Article  Google Scholar 

  18. Lee., S. B., Lee, H. M., Kiani, M., Jow U. M., & Ghovanloo, M., (2010) An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, 120(121), 7–11.

  19. Roy, S., & Wang, X. (2012). Wireless multi-channel single unit recording in freely moving and vocalizing primates. Journal of Neuroscience Methods, 203(1), 28–40.

    Article  Google Scholar 

  20. W-16 System, http://www.multichannelsystems.com/products, [online]accessed Nov. 17, 2012.

  21. Yin, M., Borton, D., Aceros, J., Patterson, W., & Nurmikko, A. (2013). A 100-channel hermetically sealed implantable device for chronic wireless neurosensing applications. Biomedical Circuits and Systems, IEEE Transactions on, 7(2), 115–127.

    Article  Google Scholar 

Download references

Acknowledgment

This work was made possible by the STW 07613 grant from the University of Amsterdam. The authors would like to thank Dr. Francesco Battaglia for his inputs in defining the specifications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinjoy Mitra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, S., Putzeys, J., Lopez, C.M. et al. 24 Channel dual-band wireless neural recorder with activity-dependent power consumption. Analog Integr Circ Sig Process 83, 317–329 (2015). https://doi.org/10.1007/s10470-015-0532-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0532-0

Keywords

Navigation