Skip to main content

Advertisement

Log in

A bidirectional neural interface SoC with an integrated spike recorder, microstimulator, and low-power processor for real-time stimulus artifact rejection

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a neural interface system-on-chip (SoC) featuring combined spike recording, electrical microstimulation, and real-time stimulus artifact rejection (SAR) for bidirectional interfacing with the nervous system. The SoC integrates a spike-recording front-end with input noise voltage of 3.42 μVrms (0.5 Hz–50 kHz), microstimulating back-end for delivering charge-balanced monophasic or asymmetric biphasic current pulses of <100 μA with passive discharge, and μW-level digital signal processing (DSP) unit for real-time SAR based on template subtraction. The DSP unit initializes its embedded 16b, 4 K static random-access memory with the first recorded stimulus artifact to reduce the operation time in generating an accurate artifact template signal for subtraction. Fabricated in AMS 0.35 μm 2P/4M CMOS, the 3.1 × 3.1-mm2 SoC has been characterized in benchtop tests and neurobiological experiments with isolated buccal ganglia of an Aplysia californica (a marine mollusk). The SoC can successfully remove mV-range stimulus artifacts with duration up to ~115 ms from the contaminated neural data in real time and recover µV-range extracellular neural spikes that occur on the tail end of the artifacts. The average root-mean-square (rms) value of the pre-processed stimulus artifact is reduced by a factor of ~24–30 post-processing, with DSP unit power consumption of <25 µW from 1.5 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. McGill, K. C., Cummins, K. L., Dorfman, L. J., Berlizot, B. B., Luetkmeyer, K., Nishimura, D. G., & Widrow, B. (1982). On the nature and elimination of stimulus artifact in nerve signals evoked and recorded using surface electrodes. IEEE Transactions on Biomedical Engineering, 29(2), 129–137.

    Article  Google Scholar 

  2. Guggenmos, D. J., Azin, M., Barbay, S., Mahnken, J. D., Dunham, C., Mohseni, P., & Nudo, R. J. (2013). Restoration of function after brain damage using a neural prosthesis. Proceedings of the National Academy of Sciences of the USA (PNAS), 110(52), 21177–21182.

    Article  Google Scholar 

  3. Azin, M., Guggenmos, D. J., Barbay, S., Nudo, R. J., & Mohseni, P. (2011). A battery-powered activity-dependent intracortical microstimulation IC for brain-machine-brain interface. IEEE Journal of Solid-State Circuits, 46(4), 731–745.

    Article  Google Scholar 

  4. Shahrokhi, F., Abdelhalim, K., Serletis, D., Carlen, P. L., & Genov, R. (2010). The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Transactions on Biomedical Circuits and Systems, 4(3), 149–161.

    Article  Google Scholar 

  5. Sharma, V., McCreery, D. B., Han, M., & Pikov, V. (2010). Bidirectional telemetry controller for neuroprosthetic devices. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(1), 67–74.

    Article  Google Scholar 

  6. DeMichele, G., & Troyk, P. R. (2003). Stimulus-resistant neural recording amplifier. In Proceedings of the 25th Annual International IEEE Engineering in Medicine and Biology Conference (EMBC’03) (pp. 3329–3332).

  7. Hines, A. E., Crago, P. E., Chapman, G. J., & Billian, C. (1996). Stimulus artifact removal in EMG from muscles adjacent to stimulated muscles. Journal of Neuroscience Methods, 64(1), 55–62.

    Article  Google Scholar 

  8. Nikolic, Z. M., Popovic, D. B., Stein, R. B., & Kenwell, Z. (1994). Instrumentation for ENG and EMG recordings in FES systems. IEEE Transactions on Biomedical Engineering, 41(7), 703–706.

    Article  Google Scholar 

  9. Jadvar, H., & Benson Jr., D. W. (1989). A stimulus artifact suppressor for esophageal pacing studies: Design and clinical testing. In Proceedings of the 11th Annual International IEEE Engineering Medicine Biology Conference (pp. 1401–1402).

  10. Brown, E. A., Ross, J. D., Blum, R. A., Nam, Y., Wheeler, B. C., & DeWeerth, S. P. (2008). Stimulus-artifact elimination in a multielectrode system. IEEE Transactions on Biomedical Circuits and Systems, 2(1), 10–21.

    Article  Google Scholar 

  11. Blum, R. A., Ross, J. D., Brown, E. A., & DeWeerth, S. P. (2007). An integrated system for simultaneous multichannel neuronal stimulation and recording. IEEE Transactions on Circuits and Systems: Part I, 54(12), 2608–2618.

    Article  Google Scholar 

  12. Hanson, T. L., Omarsson, B., O’Doherty, J. E., Peikon, I. D., Lebedev, M. A., & Nicolelis, M. A. L. (2012). High-side digitally current-controlled biphasic bipolar microstimulator. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(3), 331–340.

    Article  Google Scholar 

  13. Wagenaar, D. A., & Potter, S. M. (2002). Real-time multichannel stimulus artifact suppression by local curve fitting. Journal of Neuroscience Methods, 120(2), 113–120.

    Article  Google Scholar 

  14. Hashimoto, T., Elder, C. M., & Vitek, J. L. (2002). A template subtraction method for stimulus artifact removal in high-frequency deep brain stimulation. Journal of Neuroscience Methods, 113(2), 181–186.

    Article  Google Scholar 

  15. Wichmann, T. (2000). A digital averaging method for removal of stimulus artifacts in neurophysiologic experiments. Journal of Neuroscience Methods, 98(1), 57–62.

    Article  Google Scholar 

  16. Wichmann, T., & Devergnas, A. (2011). A novel device to suppress electrical stimulus artifacts in electrophysiological experiments. Journal of Neuroscience Methods, 201(1), 1–8.

    Article  Google Scholar 

  17. Azin, M., Chiel, H. J., & Mohseni, P. (2007). Comparisons of FIR and IIR implementations of a subtraction-based stimulus artifact rejection algorithm. In Proceedings of the 29th Annual International IEEE Engineering Medicine Biology Conference (EMBC’07) (pp. 1437–1440).

  18. Limnuson, K., Lu, H., Chiel, H. J., & Mohseni, P. (2014). Real-time stimulus artifact rejection via template subtraction. IEEE Transactions on Biomedical Circuits and Systems, 8(3), 391–400.

    Article  Google Scholar 

  19. Limnuson, K., Lu, H., Chiel, H. J., & Mohseni, P. (2014). A bidirectional neural interface SoC with an integrated spike recorder, microstimulator, and low-power processor for real-time stimulus artifact rejection. In Proceedings of IEEE Custom Integrated Circuits Conference (CICC’14).

  20. Hunter, J. S. (1986). The exponentially weighted moving average. The Journal of Quality Technology, 18(4), 203–210.

    Google Scholar 

  21. Oppenheim, A. V., & Schafer, R. W. (2010). Discrete-time signal processing. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  22. Harrison, R. R., & Charles, C. (2003). A low-power low-noise CMOS amplifier for neural recording applications. IEEE Journal of Solid-State Circuits, 38(6), 958–965.

    Article  Google Scholar 

  23. Jackson, A., Mavoori, J., & Fetz, E. E. (2006). Long-term motor cortex plasticity induced by an electronic neural implant. Nature, 444, 56–60.

    Article  Google Scholar 

  24. Shahdoost, S., Frost, S., Van Acker, G., DeJong, S., Dunham, C., Barbay, S., Nudo, R., & Mohseni, P. (2014). Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury. In Proceedings of the 36th Annual International IEEE Engineering Medicine Biology Conference (EMBC’14) (pp. 486–489).

  25. Zimmermann, J. B., & Jackson, A. (2014). Closed-loop control of spinal cord stimulation to restore hand function after paralysis. Frontiers in Neuroscience, 8(87), 1–8.

    Google Scholar 

  26. Tsividis, Y. (1999). Operation and modeling of the MOS transistor (2nd ed.). New York, NY: Oxford University Press.

    Google Scholar 

  27. Demosthenous, A. (2014). Advances in microelectronics for implantable medical devices. Advances in Electronics. doi:10.1155/2014/981295.

    Google Scholar 

  28. Sooksood, K., Stieglitz, T., & Ortmanns, M. (2008). An experimental study on passive charge balancing. In Proceedings of the Annual Conference International Functional Electrical Stimulation Society (IFESS’08).

  29. Ortmanns, M. (2007). Charge balancing in functional electrical stimulators: A comparative study. In Proceedings of the IEEE International Symposium Circuits and Systems (ISCAS’07) (pp. 573–576).

  30. Arora, M. (2012). The art of hardware architecture: Design methods and techniques for digital circuits. New York, NY: Springer-Verlag.

    Book  Google Scholar 

  31. Limnuson, K., Lu, H., Chiel, H. J., & Mohseni, P. (2011). FPGA implementation of an IIR temporal filtering technique for real-time stimulus artifact rejection. In Proceedings of the IEEE Biomedical Circuits and Systems Conference (BioCAS’11) (pp. 49–52).

  32. McManus, J. M., Lu, H., & Chiel, H. J. (2012). An in vitro preparation for eliciting and recording feeding motor programs with physiological movements in Aplysia californica. Journal of Visualized Experiments, 70, e4320. doi:10.3791/4320.

    Google Scholar 

  33. Cullins, M. J., & Chiel, H. J. (2010). Electrode fabrication and implantation in Aplysia californica for multichannel neural and muscular recordings in intact, freely behaving animals. Journal of Visualized Experiments, 40, e1791. doi:10.3791/1791.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Defense Traumatic Brain Injury—Investigator-Initiated Research Award Program under Award W81XWH-10-1-0741 (to P. Mohseni) and National Institutes of Health grant NS047073 (to H. J. Chiel). The authors would like to thank J. McManus, Case Western Reserve University, Cleveland, OH, for his assistance in conducting the neurobiological experiments, as well as Dr. D. Guggenmos and Prof. R. Nudo, University of Kansas Medical Center, Kansas City, KS, for providing the prerecorded rat neural dataset. The authors would also like to thank Dr. M. Azin, QualComm, San Diego, CA, and Prof. M. Buchner, Case Western Reserve University, for helpful discussions that made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedram Mohseni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limnuson, K., Lu, H., Chiel, H.J. et al. A bidirectional neural interface SoC with an integrated spike recorder, microstimulator, and low-power processor for real-time stimulus artifact rejection. Analog Integr Circ Sig Process 82, 457–470 (2015). https://doi.org/10.1007/s10470-015-0489-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0489-z

Keywords

Navigation