Skip to main content
Log in

Analysis and design of an electrostatic MEMS microphone using the PolyMUMPs process

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents the analysis and design of an electrostatic MEMS microphone using the PolyMUMPs process with an additional back-etch processing step. Circular and square (simply supported and clamped) diaphragm designs are considered and analyzed, with the final design being based on the clamped square diaphragm with a bottom sound port. Although simply supported diaphragms exhibit high sensitivity for a given size, most MEMS fabrication processes such as the PolyMUMPS process, can only support clamped diaphragms. The effect of the back chamber volume on the microphone sensitivity is also investigated. The bias voltage is 6 V and the diaphragm has a side-length of 675 µm. The back-plate includes several holes which amount to a perforation ratio of 0.33. The maximum allowable input pressure before pull-in is 139 dB SPL. The microphone with a back-chamber volume of 6 mm3 exhibits a sensitivity of 8.4 mV/Pa at 94 dB SPL at an operating frequency of 1 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors. (2011). Edition, micro-electro-mechanical systems (MEMS). Retrieved from http://www.itrs.net/Links/2011ITRS/2011Chapters/2011MEMS.pdf.

  2. Akustica Bosch Group. (2011). Akustica microphone backgrounder. Retrieved from http://www.akustica.com.

  3. International Technology Roadmap for Semiconductors. (2013). Edition, micro-electro-mechanical systems (MEMS). Retrieved from http://public.itrs.net/Links/2013ITRS/Summary2013.htm.

  4. Schellin, R., Pedersen, M., Olthuis, W., Bergveld, P., & Hess, G. (1995). A monolithically integrated silicon microphone with piezoelectric polymer layers. In Micromechanics Europe, September 3–5, Copenhagen, Denmark (pp. 217–220).

  5. Schellin, R., & Hess, G. (1992). A silicon microphone based on piezoresistive polysilicon strain gauges. Sensors Actuators A, 44, 1–11.

    Google Scholar 

  6. Sugiyama, S., Shimaoka, K., & Tabata, O. (1991). Surface micro machining micro-diaphragm pressure sensor. In Solid-State Sensors and Actuators, pp. 265–275.

  7. Chan, C., Lai, W., Wu, M., Wang, M., & Fang, W. (2011). Design and implementation of a capacitive-type microphone with rigid diaphragm and flexible spring using the two poly silicon micromachining processes. IEEE Sensors Journal, 11, 2365–2371.

    Google Scholar 

  8. Her, H. C., Wu, T. L., & Huang, J. H. (2008). Acoustic analysis and fabrication of micro-electro-mechanical system capacitive microphones. Journal of Applied Physics, 104, 084509–084509-9.

    Article  Google Scholar 

  9. Je, C. H., Lee, J., Yang, W., Kim, J. (2011). The novel sensitivity improved surface micromachined MEMS microphone with the center-hole membrane. In Proceedings Eurosensors XXV, Athens, Greece (pp. 583–586).

  10. Mohamed, G. H. (2006). The MEMS handbook: Applications (pp. 41–52). Boca Raton: CRC Press.

    Google Scholar 

  11. Sessler, G. (1991). Acoustic sensors. Sensors Actuators A, 25–27, 323–330.

    Article  Google Scholar 

  12. Grixti, R., Grech, I., Casha, O., Gatt, E., Darmanin, J. M., & Micallef, J. (2014). Feasibility study of a MEMS microphone design using the PolyMUMPs process. In Design, Test, Integration and Packaging of MEMS/MOEMS Symposium (DTIP 2014), Cannes Côte d’Azur, France.

  13. Scheeper, P., Donk, A., Olthuis, W., & Bergveld, A. (1994). A review of silicon microphones. Sensors Actuators A, 44, 1–11.

    Article  Google Scholar 

  14. Morse, P., & Ignard., (1968). Theoretical acoustics. New York: McGraw Hill. 1968.

    Google Scholar 

  15. Liu, C. (2012). Foundations of MEMS (pp. 516–519). New Jersey: Prentice Hall.

    Google Scholar 

  16. Neumann, J. J., & Gabriel, K. J. (2001). CMOS-MEMS membrane for audio-frequency acoustic actuation. In The 14th IEEE International Conference on Micro Electro Mechanical Systems (pp. 236–239).

  17. Weigold, J., Brosnihan, T., Bergeron, J., & Zhang, X. (2006). A MEMS condenser microphone for consumer applications. In 19th IEEE International Conference on MEMS, Istanbul (pp. 86–89).

  18. Fraim, F., & Murphy, P. (1970). Miniature electret microphones. Journal of the Audio Engineering Society, 18, 511–517.

    Google Scholar 

  19. Donk, V., Voorthuqzen, & Bergveld, (1992). Optimal design of electret microphone MOSFET preamplifier. Journal of the Acoustic Society of America, 91, 2261–2269.

    Article  Google Scholar 

  20. Donk, V., Voorthuqzen, J. A., & Bergveld, P. (1991). General considerations of noise in microphone pre-amplifiers. Sensors and Actuators A, 26, 515–520.

    Article  Google Scholar 

  21. Nielsen, J. H., & Fϋrst, C. (2007). Toward more-compact digital microphones. Analog Dialogue, 41(09). Retrieved from http://www.analog.com/analogdialogue.

  22. Jawed, S. A., Cattin, D., Massari, N., Gottardi, M., Margesin, B., & Baschirotto, A. (2007). A simplified modeling approach for a MEMS capacitive sensor. In 18th European Conference on Circuit Theory and Design (pp. 112–115).

  23. Feiertag, G., Winter, M., Bakardjievc, P., Schröderc, E., Siegel, C., Yusufia, M., Iskrad, P., & Leidl, A. (2011). Determining the acoustic resistance of small sound holes for MEMS microphone. In Proceedings Eurosensors XXV, Athens, Greece (pp. 1509–1512).

  24. Chen, J. Y., Hsu, Y. C., Mukherjee, T., Fedder, G. K. (2007). Modeling and simulation of a condenser microphone. In Solid-State Sensors, Actuators and Microsystems Conference, June 10–14 (pp. 1299–1302).

  25. McClelland, J. F., & Pedersen, M. (2005). Optimised capacitive MEMS microphone optimized for photoacoustic spectroscopy (PAS) applications. In Proceedings of Quantum Sensing and Nanophotonic Devices II (p. 108).

  26. McClelland, J. F., & Pedersen, M. (2007). Capacitive MEMS microphone optimized for PAS applications. Ames: MTEC Photoacoustics Inc. & Movusonic Corporation.

    Google Scholar 

  27. Cowen, A., Hardy, B., Mahadevan, R., & Wilcenski, S. (2011). PolyMUMPs design handbook (rev. 13). Bernin: MEMSCAP Inc.

    Google Scholar 

Download references

Acknowledgments

The research work disclosed in this publication was funded through a scholarship scheme offered by ST-Microelectronics, Malta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen Casha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grixti, R., Grech, I., Casha, O. et al. Analysis and design of an electrostatic MEMS microphone using the PolyMUMPs process. Analog Integr Circ Sig Process 82, 599–610 (2015). https://doi.org/10.1007/s10470-014-0484-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0484-9

Keywords

Navigation