Skip to main content
Log in

Group Signature Formulas Constructed from Graphs

  • Published:
Algebra and Logic Aims and scope

Given a finite undirected graph Γ without loops, we define a sentence Φ(Γ) of group theory. A sequence of graphs Γi is used to obtain a sequence of sentences Φ(Γi). These are employed to determine the Γ-dimension of a group and to study properties of the dimension. Under certain restrictions on a group, the known centralizer dimension is the Γ-dimension for some sequence of graphs. We mostly focus on dimensions defined by using linear graphs and cycles. Dimensions for a number of partially commutative metabelian groups are computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Mal’tsev, “Free solvable groups,” Dokl. Akad. Nauk SSSR, 130, No. 3, 495-498 (1960).

  2. A. J. Duncan, I. V. Kazachkov, and V. N. Remeslennikov, “Centralizer dimension and universal classes of groups,” Sib. El. Mat. Izv., 3, 197-215 (2006); http://semr.math.nsc.ru/v3/p197-215.pdf

  3. E. I. Timoshenko, “Universal theories and centralizer dimensions of groups,” Algebra and Logic, 58, No. 3, 268-281 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. A. Mishchenko and A. V. Treier, “Commutativity graphs for partially commutative nilpotent Q-groups of class two,” Sib. El. Mat. Izv., 4, 460-481 (2007); http://semr.math.nsc.ru/v4/p460-481.pdf.

  5. A. A. Mishchenko and E. I. Timoshenko, “Universal equivalence of partially commutative nilpotent groups,” Sib. Math. J., 52, No. 5, 884-891 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  6. E. I. Timoshenko, “Universal equivalence of partially commutative metabelian groups,” Algebra and Logic, 49, No. 2, 177-196 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. E. I. Timoshenko, “Centralizer dimensions and universal theories for partially commutative metabelian groups,” Algebra and Logic, 56, No. 2, 149-170 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  8. Ch. K. Gupta and E. I. Timoshenko, “Universal theories for partially commutative metabelian groups,” Algebra and Logic, 50, No. 1, 1-16 (2011).

    MathSciNet  MATH  Google Scholar 

  9. A. Myasnikov and P. Shumyatsky, “Discriminating groups and c-dimension,” J. Group Theory, 7, No. 1, 135-142 (2004).

    MathSciNet  MATH  Google Scholar 

  10. E. I. Timoshenko, “Centralizer dimensions of partially commutative metabelian groups,” Algebra and Logic, 57, No. 1, 69-80 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  11. Ch. K. Gupta and E. I. Timoshenko, “Partially commutative metabelian groups: Centralizers and elementary equivalence,” Algebra and Logic, 48, No. 3, 173-192 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. E. I. Timoshenko, “Basis of partially commutative metabelian group,” Izv. Ross. Akad. Nauk, Ser. Mat., 85, No. 4, 205-214 (2021).

    MathSciNet  Google Scholar 

  13. V. N. Remeslennikov, “Representation of finitely generated metabelian groups by matrices,” Algebra and Logic, 8, No. 1, 39-40 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  14. B. A. Wehrfritz, “Faithful representations of finitely generated metabelian groups,” Can. J. Math., 27, 1355-1360 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  15. B. A. Wehrfritz, “On finitely generated soluble linear groups,” Math. Z., 170, 155-167 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  16. E. I. Timoshenko, “On universally equivalent solvable groups,” Algebra and Logic, 39, No. 2, 131-138 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  17. O. Chapuis, “ -free metabelian groups,” J. Symb. Log., 62, No. 1, 159-174 (1997).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Timoshenko.

Additional information

Translated from Algebra i Logika, Vol. 61, No. 2, pp. 201-219, March-April, 2022. Russian DOI: https://doi.org/10.33048/alglog.2022.61.204

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timoshenko, E.I. Group Signature Formulas Constructed from Graphs. Algebra Logic 61, 139–152 (2022). https://doi.org/10.1007/s10469-022-09682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-022-09682-y

Keywords

Navigation