Skip to main content
Log in

Classes of Algebraic Structures

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This paper is a survey of some topics in computable structure theory, illustrating the power of certain infinitary sentences to describe mathematical structures and classes of structures. It includes classical results such as the Scott isomorphism theorem and the Lopez-Escobar theorem, and work of Friedman and Stanley on comparing classes of structures according to the complexity of their invariants. It also includes more recent results, in particular, on torsion-free Abelian groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Scott, “Logic with denumerably long formulas and finite strings of quantifiers,” In: The Theory of Models. Proc. 1963 Int. Symp. Berkeley, pp. 329-341, North-Holland, Amsterdam (1965).

  2. C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, Amsterdam (2000).

    MATH  Google Scholar 

  3. A. Montalbán, Computable Structure Theory, Part II: Beyond the Arithmetic [Submitted for publication in 2022].

  4. M. Vanden Boom, “The effective Borel hierarchy,” Fundam. Math. 195, No. 3, 269–289 (2007).

  5. E. G. K. Lopez-Escobar, “An interpolation theorem for denumerably long formulas,” Fundam. Math. 57, 253–272 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  6. R. L. Vaught, “Invariant sets in topology and logic,” Fundam. Math. 82, 269–294 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Friedman and L. Stanley, “A Borel reducibility theory for classes of countable structures,” J. Symb. Log. 54, No. 3, 894–914 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  8. I. S. Lavrov, “Effective inseparability of the set of identically true formulae and finitely refutable formulas for certain elementary theories” [in Russian], Algebra Logic, 2, No. 1, 5–18 (1963).

    Google Scholar 

  9. A. Mekler, “Stability of nilpotent groups of class 2 and prime exponent,” J. Symb. Log. 46, 781–788 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Marker, Model Theory: An Introduction, Springer, New York, NY (2002).

    MATH  Google Scholar 

  11. A. Nies, “Undecidable fragments of elementary theories,” Algebra Univers. 35, No. 1, 8–33 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Camerlo and S. Gao, “The completeness of the isomorphism relation for countable Boolean algebras,” Trans. Am. Math. Soc. 353, No. 2, 491–518 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Miller, B. Poonen, H. Schoutens, and A. Shlapentokh, “A computable functor from graphs to fields,” J. Symb. Log. 83, No. 1, 326–348 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. I. Mal’tsev, “On a correspondence between rings and groups” [in Russian], Mat. Sb. 50, 257–266 (1960); English transl.: Am. Math. Soc., Transl., II 45, 221–231 (1965).

  15. R. Alvir, W. Calvert, G. Goodman, V. Harizanov, J. F. Knight, A. Morozov, R. Miller, A. Soskova, and R. Weisshaar, “Interpreting a field in its Heisenberg group,” J. Symb. Log. 87, No. 3, 1215–1230 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. F. Knight, A. Soskova, and S. Vatev, “Coding in graphs and linear orderings,” J. Symb. Log. 85, No. 2, 673–690 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Harrison-Trainor and A. Montalbán, “The tree of tuples of a structure,” J. Symb. Log. 87, No. 1, 21–46 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Calvert, D. Cummins, J. F. Knight, and S. Miller, “Comparing classes of finite structures,” Algebra Logic 43, No. 6, 374–392 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. F. Knight, S. Quinn, and M. Vanden Boom, “Turing computable embeddings,” J. Symb. Log. 72, No. 3, 901–918 (2007).

  20. R. Baer, “Abelian groups without elements of finite order,” Duke Math. J. 3, 68–122 (1937).

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Hjorth, “Around non-classifiability for countable torsion-free Abelian groups,” In:Abelian Groups and Modules, pp. 269–292., Birkh¨auser, Basel (1999).

  22. S. Thomas, “The classification problem for torsion-free Abelian groups of finite rank,” J. Am. Math. Soc. 16, No. 1, 233–258 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. G. Kurosh, “Primitive torsionsfreie abelsche Gruppen vom endlichen Range” [in German], Ann. Math. 38, 175–203 (1937).

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Fuchs, Infinite Abelian Groups. Vol. II, Academic Press, New York etc. (1973).

    MATH  Google Scholar 

  25. S. Thomas and B. Velickovic, “On the complexity of the isomorphism relation for fields of finite transcendence degree,” J. Pure Appl. Algebra 159, No. 2-3, 347–363 (2001).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Knight.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knight, J.F. Classes of Algebraic Structures. J Math Sci 275, 16–24 (2023). https://doi.org/10.1007/s10958-023-06656-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06656-y

Navigation