Skip to main content
Log in

On Euclidean Components of Auslander-Reiten Quivers of Finite Group Schemes

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We are interested in components of the stable Auslander-Reiten quiver \({\Gamma }_{s}(\mathcal {G})\) of a finite group scheme \(\mathcal {G}\) over a field k of characteristic p. By definition, \({\Gamma }_{s}(\mathcal {G})\) is defined to be the stable Auslander-Reiten quiver of the finite-dimensional cocommutative Hopf algebra \(k\mathcal {G}:=k[\mathcal {G}]\), the dual Hopf algebra of its coordinate ring \(k[\mathcal {G}]\). Every component Θ of \({\Gamma }_{s}(\mathcal {G})\) gives rise to a tree \(\overline {T}_{\Theta }\). If p ≥ 3, will show that the presence of a non-trivial unipotent normal subgroup \(\mathcal {N}\unlhd \mathcal {G}\) implies that \(\overline {T}_{\Theta }\) is not Euclidean and that Θ is not isomorphic to \(\mathbb {Z}[\tilde {A}_{p,q}]\) for any natural numbers p,q. This will be proven by using certain invariants of components defined by p-points of \(\mathcal {G}\). In case of a finite group G, which can be seen as a special instance of a finite group scheme, we will then obtain an alternative proof of Okuyama’s theorem, which asserts that the abovementioned components will in general not occur in that case. Further applications will be given in the contexts of trigonalizable group schemes, Frobenius kernels Gr of (reductive) algebraic groups G and for finite group schemes \(\mathcal {G}\) with tame principal block \({\mathscr{B}}_{0}(\mathcal {G})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslander, M., Reiten, I., Smalø, S.: Representation Theory of Artin Algebras. Cambridge Univ Press, Cambridge (1995)

  2. Bautista, R., Salmerón, L., Zuazua, R.: Differential Tensor Algebras and Their Module Categories, Volume 362 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  3. Butler, M.C.R., Ringel, C.M.: Auslander-Reiten sequences with few middle terms and applications to string algebras. Comm. Algebra 15(1-2), 145–179 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Crawley-Boevey, W.W.: On tame algebras and bocses. Proc. London Math. Soc. (3) 56(3), 451–483 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Drozd, J.A.: Tame and wild matrix problems. In: Representation Theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), Volume 832 of Lecture Notes in Math, pp 242–258. Springer, Berlin (1980)

  6. Erdmann, K.: Blocks of tame Representation Type and Related Algebras, volume 1428 of Lecture Notes in Mathematics. Springer, Berlin (1990)

    Google Scholar 

  7. Erdmann, K.: The Auslander-Reiten Quiver of Restricted Enveloping Algebras. In: Representation Theory of Algebras (Cocoyoc, 1994), Volume 18 of CMS Conf. Proc, pp 201–214. Amer. Math. Soc., Providence, RI (1996)

  8. Farnsteiner, R.: On the auslander-Reiten quiver of an infinitesimal group. Nagoya. Math. J. 160, 103–121 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Farnsteiner, R.: Group-graded algebras, extensions of infinitesimal groups, and applications. Transform. Groups 14(1), 127–162 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Farnsteiner, R.: Jordan types for indecomposable modules of finite group schemes. J. Eur. Math. Soc. (JEMS) 16(5), 925–989 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Farnsteiner, R., Skowroń, ski, A.: Classification of restricted Lie algebras with tame principal block. J Reine Angew. Math. 546, 1–45 (2002)

  12. Farnsteiner, R., Strade, H.: Modular Lie Algebras and Their Representations. Marcel Dekker Inc (1988)

  13. Fischman, D., Montgomery, S., Schneider, H.-J.: Frobenius extensions of subalgebras of Hopf algebras. Trans. Amer. Math Soc. 349(12), 4857–4895 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedlander, E.M., Pevtsova, J.: π-supports for modules for finite group schemes. Duke Math. J. 139(2), 317–368 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Friedlander, E.M., Suslin, A.: Cohomology of finite group schemes over a field. Invent. Math. 127(2), 209–270 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Green, J.A.: On the indecomposable representations of a finite group. Math. Z. 70, 430–445 (1958/59)

  17. Happel, D., Preiser, U., Ringel, C.M.: Vinberg’s Characterization of Dynkin Diagrams Using Subadditive Functions with Application to D Tr-Periodic Modules. In: Representation Theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), volume 832 of Lecture Notes in Math, pp 280–294. Springer, Berlin (1980)

  18. Humphreys, J.E.: Algebraic Groups and Modular Lie Algebras Memoirs of the American Mathematical Society, vol. 71. American Mathematical Society, Providence (1967)

    Google Scholar 

  19. Jantzen, J.C.: Representations of Lie Algebras in Prime Characteristic. In: Representation Theories and Algebraic Geometry (Montreal, PQ, 1997), Volume 514 of NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. Notes by Iain Gordon, pp 185–235. Kluwer Acad. Publ, Dordrecht (1998)

  20. Jantzen, J.C.: Representations of Algebraic Groups. American Mathematical Society (2003)

  21. Kawata, S.: Module correspondence in auslander-Reiten quivers for finite groups. Osaka J. Math. 26(3), 671–678 (1989)

    MathSciNet  MATH  Google Scholar 

  22. Kerner, O., Zacharia, D.: Auslander-R,eiten theory for modules of finite complexity over self-injective algebras. Bull. Lond. Math Soc. 43(1), 44–56 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Külshammer, J.: Representation Type and Auslander-Reiten Theory of Frobenius-Lusztig Kernels. PhD thesis, CAU Kiel (2012)

    MATH  Google Scholar 

  24. Milne, J.S.: Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field. Cambridge, Cambridge University Press (2017)

    Book  MATH  Google Scholar 

  25. Okuyama, T.: On the auslander-Reiten quiver of a finite group. J. Algebra 110(2), 425–430 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Passman, D.S.: The Algebraic Structure of Group Rings. Pure and Applied Mathematics. Wiley-Interscience, New York (1977)

    Google Scholar 

  27. Riedtmann, C.: Algebren, darstellungsköcher, Überlagerungen und zurück. Comment. Math. Helv. 55(2), 199–224 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ringel, C.M.: On Algorithms for Solving Vector Space Problems. II. Tame Algebras. In: Representation Theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), volume 831 of Lecture Notes in Math, pp 137–287. Springer, Berlin (1980)

  29. Thiel, J.-N.: Semidirect Products of Finite Group Schemes: Gabriel Quivers and Auslander-Reiten Components. PhD thesis, Christian-Albrechts-Universität zu Kiel (2021)

  30. Waterhouse, W.: Introduction to Affine Group Schemes. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  31. Webb, P.J.: The auslander-Reiten quiver of a finite group. Math. Z. 179(1), 97–121 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Rolf Farnsteiner for his helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Niclas Thiel.

Additional information

Presented by: Henning Krause

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiel, JN. On Euclidean Components of Auslander-Reiten Quivers of Finite Group Schemes. Algebr Represent Theor 26, 1217–1230 (2023). https://doi.org/10.1007/s10468-022-10130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-022-10130-9

Keywords

Mathematics Subject Classification (2010)

Navigation